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Abstract: A marine heatwave (MHW) can significantly harm marine ecosystems and fisheries. 

Based on a remotely sensed sea surface temperature (SST) product, this study investigated MHWs 

behaviors in the South China Sea (SCS) throughout the warm season (May to September) from 1982 

to 2020. The distributions of the three MHW indices used in this study showed significant latitudinal 

variations: more frequent, longer, and more intense MHWs appear in the northern SCS, and less 

frequent, shorter, and weaker MHWs appear in the southern SCS. Using the empirical orthogonal 

function (EOF) method, we found that the first leading modes of the three MHW indices account 

for more than half of the total variance. The first leading modes reveal uniform anomalies through-

out the SCS, with the maximum in the deep central portion and its surroundings. Their correspond-

ing time series showed significant interdecadal variations, with a turning point around 2009. Since 

2010, the SCS has seen an increase in the frequency, length, and severity of MHWs. The incidence 

of MHWs has been linked to the presence of stable near-surface anticyclonic anomalies, which re-

duced cloud cover and increased solar radiation. This abnormal pattern was usually accompanied 

by the intensification and westward shift of the western North Pacific subtropical high (WNPSH). 

The findings imply that MHWs in the SCS may be predictable on interannual and decadal scales. 
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1. Introduction 

The majority of the extra energy created by rising greenhouse gas (GHG) concentra-

tions has been absorbed by the global oceans over the last century [1,2]. Studies showed 

that the additional energy warms the ocean, particularly the surface, resulting in marine 

high-temperature events known as marine heatwaves (MHWs) [3,4]. MHWs, in the last 

two decades, are becoming more frequent, longer, and more intense in most parts of the 

world [5–7]. More than 80% of the global oceans experienced at least one MHW in 2019 

and 2020 [8]. MHWs have had a negative impact on marine organisms and ecosystems by 

pushing them to or beyond their thermal tolerance limits [4]. Research confirmed that 

long-distance migration of marine species, widespread coral bleaching, mass kelp forest 

mortality, and even economic losses in fishery industries have all been linked to MHWs 

[9,10]. MHWs are one of the primary indicators used in assessing the impact of climate 

change. 

Recent studies have identified that the MHWs can be caused by the interaction of 

many local processes, large-scale climate modes, and teleconnections [4,11]. For example, 

atmospheric blocking over the ocean (e.g., Tasman Sea and Northwest Atlantic) can re-

duce cloud cover, enhance solar radiation, and calm winds, leading to MHWs [11]. In the 
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context of global warming, atmospheric blockings have become more frequent and will 

be the key system in the future for the formation of large-scale MHWs [12]. Ocean dy-

namic processes, such as the enhancement of warm advection, shallowing of mixing layer, 

enhancement of ocean stratification, weakening of vertical mixing and upwelling, etc., are 

advantageous to the occurrence of MHWs [4]. In addition, MHWs can also be caused by 

El Niño and Southern Oscillation (ENSO), the Indian Ocean basin mode (IOB), and the 

Pacific Decadal Oscillation (PDO) in Indo-Pacific regions [13,14] remotely through atmos-

pheric or oceanic teleconnections. In short, the MHWs in various regions can be controlled 

or modulated by a variety of drivers at various spatial and temporal scales [11]. 

As part of the Indo-Pacific warm pool, the South China Sea (SCS) (Figure 1a,b) is one 

of the world’s largest marginal seas, and it plays an important role in the economies and 

development of the surrounding nations due to its high marine biological productivity 

and important ecological functions [15]. Furthermore, The SCS rivals the Coral Triangle 

for the importance and diversity of its reefs. The SCS is home to an estimated 571 known 

species of reef corals [16]. The total reef area was estimated at about 37,935 km2, account-

ing for about 5% of the world’s total coral reef area [17]. Corals in the SCS experienced 

unprecedented mass bleaching in 2015, resulting in 40% coral mortality [18]. In August-

September of 2020, more widespread coral bleaching events occurred in the northern SCS, 

coastal areas of Guangdong, and Guangxi Provinces of China (Figure 1b), with up to 100% 

bleaching and an 86% mortality rate [19]. Coral bleaching has been linked to unusually 

severe MHWs in these areas. The research discovered that the marginal seas warmed 

much faster than the open oceans in a warming climate [20], indicating an increased like-

lihood of MHWs in these regions. Therefore, it is critical to investigate the characteristics, 

long-term variability, and drivers of MHWs in this region to improve prediction and build 

an early warning system. 

Compared with other marginal seas, the SCS has fewer studies on MHWs [21]. The 

SCS has a typically tropical climate with long-lasting hot weather, and during the warm 

season, MHWs may easily exceed the thermal tolerance of marine organisms, leading to 

severe mass mortality [22]. Thus, we only considered MHWs that occurred during the 5-

month warm season (May to September) in this region (more details are shown in Section 

2). The spatiotemporal characteristics of warm season MHWs in the SCS are investigated 

for the period 1982–2020. The frequency, duration, and intensity of MHWs are the three 

key indicators analyzed. Furthermore, Empirical Orthogonal Function (EOF) is used to 

examine the dominant patterns of MHW and their regional characteristics. Here, we focus 

on the MHWs’ association with the large-scale atmospheric conditions which may initiate 

and sustain regional MHWs. 

This paper is organized as follows. Section 2 describes the study region, data, and 

methods used. Section 3 depicts the results of our work, including climatology and long-

term trends in annual MHWs indices, dominant Modes of MHWs variations, and connec-

tion with large-scale atmospheric circulation. Sections 4 and 5 provide the discussion and 

conclusion. 
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Figure 1. Geographical maps of (a) the Indo-Pacific regions, black rectangle indicates the South 

China Sea (SCS) region and (b) map of the SCS with bathymetry (shaded areas, units: meters) (b); 

graph of monthly mean SST in the SCS for the period 1983–2012 (c). 

2. Data and Methods 

2.1. Study Region 

The SCS is located in the tropical-to-subtropical western North Pacific, with geo-

graphical coordinates of 5°S~25°N and 100°~125°E (Figure 1a,b). It is bounded on the north 

by the shores of South China; on the east by the islands of Taiwan and northwestern Phil-

ippines; on the south by Borneo, eastern Sumatra, and the Bangka Belitung Islands. It co-

vers about 3.6 × 106 km2 and has a mean depth of 1212 m. The deep basin, known as the 

China Sea Basin, has a maximum depth of 5016 m in its northern central part. The SCS 

serves as a link between the East Asian and South Asian monsoon systems. The monsoon-

dominated seasonal patterns distinguish it from other low-latitude waters that are insen-

sitive to seasonal cycles; such characteristics drew the interest of researchers in its oceanic 

dynamic processes and long-term climate changes [23]. 

2.2. Data Description 

Global high-resolution daily SST estimated by optimum interpolation (OI) of in situ 

and Advanced Very High-Resolution Radiometer infrared satellite SST data at 1/4° (OISST 

V2) was used in this study (the data can be downloaded from 

https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html, accessed on 10 April 

2021) [24]. OISST V2 covers more than 30 years and provides a good chance to analyze 

SST variations at interannual and inter-decadal scales. It has been widely used in MHW-
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related scientific researches [25,26]. It is important to recognize that in spite of the fact that 

the majority of research, including the most recent global assessments, have characterized 

MHWs using OISST, this product may differ from in-situ observations such as Argo in 

certain regions, hence undermining its use for MHW analyses. For example, in tropical 

regions, with strong variability of heat fluxes and dense cloud cover, small differences can 

be observed between satellite-based and buoys, ships, or drifters’ data [27]. In the SCS, the 

lowest area-averaged SST value (26.4 °C) occurs in winter (December-February), a 1.7 °C 

drop from the annual mean of 28.1 °C (Figure 1c). The area-averaged SST value begins to 

rise in March, and it surpasses 29 °C from May to September, which is 1.0 °C (i.e., nearly 

1 standard deviation) higher than the annual mean value. Thus, the five consecutive hot-

test months are considered the warm season in this region (Figure 1c). In contrast to other 

months, MHWs in these five consecutive hottest months indicate extraordinarily high SST 

conditions. 

The impact of atmospheric conditions and related atmospheric circulation on MHWs 

trends were examined by composing the anomalies of associated atmospheric variables 

in the National Centers for Environmental Prediction/National Center for Atmospheric 

Research (NCEP/NCAR) reanalysis (http://www.cdc.noaa.gov (accessed on)) [28]. These 

variables include monthly mean geopotential height (GHT), zonal and meridional 10m 

wind, cloud cover, surface net downward solar shortwave radiation, and vertical velocity 

fields from 1948 to 2020. These data have a horizontal resolution of 2.5° × 2.5° and 17 ver-

tical levels ranging from 1000 to 10 hPa. Note that the atmospheric circulation changes 

based on the ERA5 and NCEP/NCAR datasets have been compared in several previous 

articles, and we find that the results from two different reanalysis datasets are highly con-

sistent [29,30]. We thus present the results based on the NCEP/NCAR dataset, which has 

longer coverage than ERA5. 

Daily mean geopotential height at 500 hPa level (GHT500) from NCEP/NCAR Rea-

nalysis 1 dataset was used to devise the composite maps (https://psl.noaa.gov/data/grid-

ded/data.ncep.reanalysis.html (accessed on)) [28]. The spatial coverage of data is 0.0°E to 

357.5°E, 90.0°N to 90.0°S, with a horizontal resolution of 2.5° × 2.5°. The data ranges from 

1948 to 2020, and daily climatology is derived from the 30 years (1983–2012) and smoothed 

with the method of a centered-moving mean of 31 days. 

The National Climate Center (NCC) of the China Meteorological Administration 

(CMA) recommended four operational indices based on the 5880-gpm contour at 500 hPa 

to objectively describe the status of the Western North Pacific Subtropical High (WNPSH) 

in monitoring service, including area index (AI), intensity index (INI), ridgeline position 

index (RI), and Western ridge point index (WRI). The four WNPSH indices represent the 

WNPSH’s area, intensity, northern extension, and western borders, respectively. More 

details about the definitions of these indices can be found in Liu et al. (2012) [31]. In our 

work, the monthly WNPSH indices from 1982 to 2020 were obtained from the website of 

NCC (http://cmdp.ncc-cma.net/cn/index.htm, accessed on 10 April 2021). 

Our analysis was limited to 1982–2020, and the baseline in our work for the climatol-

ogy is 1983–2012, which is shifted by two years from the standard normal period of 1981–

2010 because the satellite SST series began in 1981. 

2.3. Identification of Marine Heatwaves (MHWs) and Indices 

In most cases, two types of definitions based on absolute and relative thresholds are 

employed to identify the heat waves. For better comparisons with other regions and the 

globe, we adopted a qualitative definition proposed by Hobday et al. (2016) [32]. Accord-

ing to the definition, an MHW is an unusually warm discrete event lasting for five or more 

days and throughout which the daily mean SST exceeds a relative threshold. Since MHWs 

are defined as the occurrence of daily SST anomalies at the upper tail of the probability 

distribution, a higher threshold, such as a 90th percentile, is employed, which can detect 

a relatively large number of MHWs during the warm season. Here, the 90th percentile of 

a 31-day moving-centered window from 1983 to 2012 establishes the relative threshold for 
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each calendar day during the warm season (MJJAS). Two consecutive MHWs with a two-

day or less gap were treated as a single event. Once the MHW events at any grid point are 

detected, a set of summary statistics can be derived for MHWs, including, for example, 

frequency, duration, and intensity. For an MHW, duration (D) is the period between the 

start (ts) and end (te) date of the MHW event. Considering the cumulative effect of thermal 

stress on marine ecosystems, we utilized the cumulative intensity to represent the MHW 

intensity. Cumulative intensity is the integral of intensity over the event duration (units: 

°C days). It is equivalent to previously used metrics such as Degree Heating Week, a 

method utilized by the NOAA Coral Reef Watch program for real-time coral bleaching 

alerts [33]. In the following analysis, for a particular grid point in the warm season of a 

given year, MHWN represents the number of MHWs in this year; MHWD represents the 

average duration of all MHWs in this year, and MHWI represents the average cumulative 

intensity of all MHWs in this year. All of the MHW indices listed above are detailed in 

Table 1. The code of the index calculation had been made available as a free heatwaveR 

package [34]. 

Table 1. Definitions of annual MHW indices. � is the number MHWs in the warm season of each 

year; D is the period between the start and end date of an MHW event; 

( ( ) ( ))
D

j m j
j
SST t SST t dt  is the cumulative intensity which is calculated as the sum of the dif-

ference between the daily SST for a certain day and the daily climatological mean (SST�) over the 

MHW duration (D). Notably, here the anomaly refers to a deviation of daily SST from the climato-

logical mean which we used for the fixed-baseline period (1983–2012). 

Index Definition Symbol or Formula Unit Title 2 Title 3 

MHWN 
Number of MHWs in the warm sea-

son in each year 
� Count data data 

MHWD 
Average duration of all MHWs in the 

warm season of each year 
�(��)/�

�

���

 Days   

MHWI 

Average cumulative intensity of all 

MHWs in the warm season of each 

year 

( ( ( ) ( )) ) /
i

N D

ij m ij
j

i

SST t SST t dt N  
°C • 

days 
data data 1 

2.4. Regional Marine Heatwaves (MHWs) and The Relevant Circulation Anomalies 

A regional MHW was determined when the regional averaged (5°S~25°N and 

100°~125°E) daily mean SST was above the 90th percentile value and persisted for five or 

more days. Here, 37 regional MHWs were identified in the SCS from 1982 to 2020. 

WNPSH is a large-scale and persistent high-pressure circulation system that would last 

for several weeks. To avoid the influence of the previous MHW on subsequent ones, we 

selected 28 regional MHWs that were more than 7 days apart from the end day of the 

previous MHWs. Then, the averages of the 500-hPa geopotential height of the 28 MHWs 

were counted by giving each event an identical weight to find the relevant circulation 

anomalies. 

2.5. Empirical Orthogonal Function (EOF) Analysis 

We used an empirical orthogonal function (EOF) analysis to investigate the spatio-

temporal patterns of MHWN, MHWI, and MHWD of these detected MHWs in order to 

emphasize the key modes responsible for the interannual fluctuation in MHW. 

The EOF method aims at decomposing a data set into a product of a set of spatial 

patterns [35] and time series as follows: 

����, ��� = ∑ ∅�(��)��(��)
�
���   (1)
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where � is the data set, �� is the position, �� is the time, ∅� is the spatial pattern of 

the � − �ℎ mode, �� is the amplitude time series of the � − �ℎ mode, and � is the 

number of spatial elements. The functions ∅�, which are the basis functions, are chosen 

to be orthogonal to the other basis functions because the information would be repeated 

if not orthogonal, and the unit module is a common choice with no loss of generality: 

∑ ∅�(��)∅�(��) = ���
�
���   (2)

where ��� is the Kronecker delta. 

Each of the EOF patterns identified has a corresponding time series showing how the 

amplitude of the pattern changes in time, known as the principal component (PC). The 

PC time series may be obtained by projecting the EOF pattern onto the original field at 

each time step to determine the sign and amplitude of the pattern at any given time. A 

given mode can be reconstructed by multiplying the EOF (space) by its PC (time). 

The significance of the EOF modes was determined using North statistical testing 

[36]. That is, computing their sampling error as 
1/2（2/ N） , where   is a given eigen-

value and N the number of realizations, here N = 1200. 

2.6. Testing for Significance of Correlations and Trends 

When testing the significance of the correlation between two time series or the pres-

ence of trends in a time series, one important question to consider is how large sample 

correlations and sample trends can be, even if the stochastic processes, which generate the 

series, are not correlated and do not exhibit any trends. Firstly, we need to assume that 

processes X and Y share no correlation or that segments of length L of the process have no 

trend. Standard procedures are available in the literature, namely p-value for correlations 

and Mann–Kendall for trends [37], that there are “no correlations” between the underly-

ing processes, and trends can hardly appear in limited segments of an infinite stationary 

time series. 

In the case of correlations, the assumption is that the underlying processes are sta-

tionary (free of systematic trends) and serially independent, i.e., �� and ���� for any t 

are independent. In the case of trends, the assumption is the independence of ��
�. How-

ever, in geophysical cases, these assumptions are not satisfied. The result is that the null 

hypotheses are often falsely rejected (i.e., in cases where there are no correlations or no 

trends) than stipulated by the significance level (normally 5%). 

2.7. Mann–Kendall Abrupt Change Test 

Abrupt change occurs when the climate system is forced to cross a threshold and 

denotes a fast transition from one state to another [38]. The Mann–Kendall abrupt change 

test, also known as the sequential Mann–Kendall–Sneyers test, is one of the most effective 

methods for determining when an abrupt change occurred in a time series [39]. It has been 

widely applied to change point detection for long-term time series data (e.g., hydrological 

and meteorological climate changes). Our study employed this approach to examine the 

change points in MHWs. 

For the time series nx  (n is the length of the data set), the order series ( kS ) is given 

as follows: 

1

, ( 2,3,4,..., )
k

k i
i

S r k n


   

In which, 

1,
,( 1,2,3,..., )

0,

i j

i

i j

x x
r j i

x x

 
 


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where ix  and jx  are the sequential data values, and the statistic ( kUF ) is defined as: 

 ( )
, ( 1, 2,3,..., )

( )
k

k k

k

S E S
UF k n

Var S


   

where 1 0,UF   ( )kE S  and ( )kVar S  are the average value and variance of kS , which 

can be calculated by the following equations: 

( 1)
( )

4
k

n n
E S


  

( 1)(2 5)
( )

72
k

n n n
Var S

 
  

Then, the kUB  is calculated by repeating the above process in the order 

1 3 2, 1, ,..., ,n nx x x x x  of the time series which makes 1( 0, , 1,...,3,2,1)k kUB UF UB k n n    . 

In this study, we set p values as 0.05. The intersection points of the UB  and UF  curves 

indicate the possible turning year of the trend within a time series [40]. The trend turning 

point is considered significant at the corresponding threshold level (i.e., ± 1.96 for a 95% 

significance level). 

3. Results 

3.1. Climatology and Long-Term Trends in Annual MHWs Indices 

Figure 2 displays the spatial distributions of the multiyear warm season average 

MHW indices in the SCS. Notably, MHWN, MHWD, and MHWI are not spatially uniform 

in the region. More common, longer, and more intense MHWs primarily occur in northern 

SCS with shallow depth, particularly around the Beibu Gulf and the offshore areas of the 

Pearl River estuary (Figure 2a–c). Longer-lasting MHWs also occur at a core section of the 

deep basin, where the average depth is over 4000 m. MHWs are less frequent in southern 

SCS, despite the fact that the climatological mean and 90th percentile SSTs of MJJAS in 

this region are both exceeding 30 °C, which is higher than in other locations (Figure 2a–c). 

During the study period (1982–2020), the MHWs in the SCS was enhanced in terms 

of increasing frequency, prolonged duration, and strengthening intensity (Figure 2d–f). 

The strongest signals of the enhancements are primarily found in coastal regions at shal-

low water and higher latitudes in the north SCS and the enhancements are almost twice 

those in the south SCS. In addition, though the linear trends of MHWN in the central SCS 

were insignificant, the trends of MHWD and MHWI were both significantly positive (Fig-

ure 2e,f). It means that MHWs in the central SCS have been getting even substantially 

severer (i.e., longer duration and/or high intensity). Thus, with the largest number of coral 

reefs, the Nansha Islands located in the central SCS face the fiercest threat from MHWs. 
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Figure 2. Spatial distribution of the multiyear warm season (1982–2020) averaged MHWN (units: 

Count) (a); MHWD (units: days) (b); and MHWI (units: °C•days) (c) in the SCS; Spatial distribution 

of long-term trends of warm season MHWN (d) (unit: count per decade); MHWD (e) (unit: days 

decade); MHWI (unit: °C•days per decade). The black dots indicate statistically significant trends 

at 0.05 level using the Mann–Kendall test of each grid point. 

3.2. Dominant Modes of Marine Heatwave Variations 

To investigate the spatial structures and temporal properties of the MHWN, MHWD, 

and MHWI in the SCS, EOF analysis is performed (Figures 3–5). The first leading EOF 

(EOF1) modes of MHWN, MHWD, and MHWI explain 56.8%, 64.5%, and 52.6% of the 

total variance, respectively. The EOF1 modes are well separated from others according to 

the North test. All of the EOF1 spatial patterns have a homogeneous structure over the 

SCS, and the corresponding principal components (PC1s) time series show clear increas-

ing trends (Figures 3–5). In addition, there are notable interdecadal variations in the 

MHWN, MHWD, and MHWI time series, with a turning point occurring around the year 

2010 based on the Mann–Kendall test method and the rapid rises since then (Figure 6). 

The remaining spatial patterns describe a small percentage of the variance (i.e., ap-

proaching or below 10%), dominated mainly by local features. Second EOF (EOF2) modes 

of MHWN, MHWD, and MHWI explain 8.1%, 8.4%, and 8.1% of the total variations, re-

spectively. The spatial distribution variations of these modes are the meridional dipole 

pattern with anomalies of opposing signs in the north and south of the SCS (Figures 3–5). 

The corresponding PC2 time series exhibited high interannual variations. It is worth no-

ticing that the amplitude of PC2 has increased dramatically since 2010, implying that the 

dipole pattern of frequency, duration, and intensity of the MHWs has been considerably 

enhanced, which is consistent with the earlier findings [41]. The spatial patterns for the 

third EOF (EOF3) modes, which explain only 5~6% of total variations, exhibited a triple 

pattern with notable positive anomalies centered at the center SCS. PC3 time series exhib-

ited an opposite trend to PC1 and PC2, and the triple pattern has become less obvious 

since 2010. 
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Figure 3. Spatial patterns of the three leading EOF modes (top panels) and the corresponding prin-

cipal components (PCs) time series (bottom panels) of MHWs frequency in warm season from 1982 

to 2020. The figure’s upper right corner shows the percentage of variance explained by each mode. 

 

 

Figure 4. Same as in Figure 3, but for the MHW duration. 
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Figure 5. Same as in Figure 4, but for the MHWI. 

 

Figure 6. Mann–Kendall test for time series of indices from 1982 to 2020, (a) MHWN, (b) MHWD, 

(c) MHWI. A significant abrupt change occurs if the UF and UB curves intersect within the confi-

dence zone. Here, the current study used a 95% confidence level (1.96 and −1.96) as the confidence 

zone’s borderlines. 

Changes in extremes can be linked to changes in probability distribution’s mean, var-

iance, shape, or all of these [42,43]. As mentioned above, MHWs have noticeable decadal 

variations in frequency, duration, and intensity, with more frequent, longer, and severer 

MHWs in the recent decade. Figure 7 depicts a statistical analysis of the regional averaged 

daily SSTAs in the warm season of the four decades. It is obvious that area-averaged 

SSTAs have greatly increased from the first decade, 1982–1990 (−0.24 °C), to the last dec-

ade, 2011–2020 (0.25 °C), with a significant warm toward-shift, up to 0.49 °C (Figure 7). In 

addition, the histogram distribution has been substantially wider and flatter in the recent 

decade (kurtosis = 0.77 in 2011–2020, kurtosis = −0.27 in 1982–1990). The shape in the last 

decade has become skewed towards the hotter part (skewness = 0.18 in 2011–2020, skew-

ness = 0.10 in 1982–1990), and the dispersion degree is greater. Increased occurrences of 

MHWs, with stronger intensity and longer duration, are a result of such a change in 
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distributions. According to the findings, the mean temperature and natural variability 

both contribute to the incidence of MHWs in the SCS. In other words, variations in MHWs 

cannot be explained solely by mean SST warming from anthropogenic forcing [44]. 

 

Figure 7. Daily mean SSTAs histograms in the warm season for 1982–1990 (a), 1991–2000 (b), 2001–

2010 (c), and 2011–2020 (d) in the SCS. The black dashed line represents SSTAs equal to 0 °C. Anom-

alies are measured in comparison to the 1983–2012 average. Statistics related to the location (mean) 

and shape (skewness and kurtosis) parameters are also shown here. 

3.3. Connection with Large-Scale Atmospheric Circulation 

3.3.1. Abnormities of Atmospheric Circulation 

MHWs can be modulated by various mechanisms, including localized air-sea heat 

flux, atmospheric and oceanic conditions, and remote large-scale teleconnections, accord-

ing to previous research [4,45]. Given that atmospheric conditions were the primary driver 

of MHW priming [46,47], we investigate the impact of atmospheric conditions and related 

circulations on MHWs trends in this section. For 1982–1991 (an early period with low-

frequency MHWs) and 2011–2020 (a recent period with high-frequency MHWs), compo-

site analysis of the atmospheric and near-surface meteorological fields, namely 10m 

winds, total cloud, surface net down-ward solar shortwave heat flux and vertical velocity 

anomalies, are calculated, respectively. 

The distributions of atmospheric and near-surface field anomalies in 1982–1991 and 

2011–2020 are shown in Figure 8, respectively. From 2011 to 2020, a notable anomalous 

anticyclone circulation was observed in the SCS, with the center at 116°E, 13°N, while 

anomalous cyclonic circulation existed in the SCS from 1982 to 1991. The anticyclone cir-

culation in the recent decade has the potential to create an abnormal easterly and north-

easterly flow from the center to the south, including the southern coast of Vietnam. The 

unusually strong easterly wind may diminish offshore Ekman transport and the 

upwelling in the east of Vietnam, weakening the upwelling cold core (110°E, 12°N) [23], 

increasing the surface temperature of central SCS, as compared to the early decade. Except 

for the southern part of SCS, the SCS is accompanied by decreased cloud cover and in-

creased solar radiation reaching the surface, which is likely to be the main reason for the 

more frequent MHWs from 2011 to 2020 (Figure 8d,f). The longitude-altitude cross sec-

tions of vertical velocity anomalies along 12.5°N for 1982–1990 and 2011–2020 are shown 

in Figure 8g,h. From 2011 to 2020, weak sinking motion dominated the entire air column 

above the center of the SCS, with the largest sinking motion occurring between 500 and 

300 hPa, while rising motion occurred over the SCS for the early period, with the largest 
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rising motion appearing at the lower troposphere (Figure 8). In the recent decade, the 

anomalous descending air motion could have been attributed to the anomalous anticy-

clone, which led to less cloud, and more solar radiation reaching the surface. 
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Figure 8. Composite patterns of anomalies of the 10m wind (unit: m s−1) in the warm season of 

1982–1992 (a) and 2010–2020 (b); total cloud cover in the warm season of 1982–1992 (c) and 2010–

2020 (d); net shortwave heat fluxes (unit: W/m2), defined as positive downward (into the ocean) in 

the warm season of 1982–1992 (e) and 2010–2020 (f); Longitude-height cross-section of anomalies 

(color shading) of vertical velocity (omega, unit: Pa/s) in 1982–1992 (g) and 2010–2020 (h) warm 

season (a positive value means sinking motion) along 12.5 °N. Anomalies are relative to the mean 

from 1983–2012. 

3.3.2. Western North Pacific Subtropical High (WNPSH) 

As detailed in the preceding subsection, these anomalies, including decreases in 

wind speed, more solar radiation, less cloud cover, and stronger downward air motion, 

are likely linked to the WNPSH’s westward shift and strengthening. WNPSH is the west-

ern extension of the North Pacific Subtropical High, which extends to the East Asian coast. 

Stronger WNPSH generates more floods and heat waves in East Asia on interannual to 

interdecadal timescales [48,49]. 

Composite patterns of the GHT500 anomalies and the mean position of WNPSH, 

which is denoted by the 5870 gpm contour line at 500-hPa, for the first and last decade are 

shown in Figure 9, respectively. For the recent decade (2011–2020), notable positive anom-

alies appeared throughout the entire SCS, while the opposing distributions of the GHT500 

anomalies were in the first decade (1982–1990) (Figure 9). Moreover, Figure 9b shows a 

significant westward extension of the WNPSH compared with the climatological position 

(green and blue dashed lines). These findings suggest that the intensification and west-

ward extension of the WNPSH may be important in establishing MHWs in the SCS, as 

they lead to strong subsidence, decreased cloud cover, and more solar radiation. 

It is worth mentioning that, since the 1980s, the SCS has become warmer, accompa-

nying global warming [50] (Figure S1, in Supporting Information S1). Previous research 

has also indicated that long-term warming caused by human activities has strengthened 

the WNPSH [51,52]. Before examining the MHW changes connected to WNPSH, linear 

trends of the PC1 time series and GHT500 should be removed (i.e., removing the linear 

trend from the time series and remaining natural variability). Regression analysis is a 

powerful statistical method that examines the relationship between two or more variables 

of interest. Figure 10 displays the patterns of detrended GHT500 regressed on the 

detrended PC1 time series of MHWN, MHWD, and MHWI. The whole SCS was domi-

nated by positive GHT500 anomalies for all the detrended PC1s time series, with the pos-

itive maximum over the north SCS (15–25°N, 105–125°E, black rectangle in Figure 10). The 

observations support prior findings that an unusual high-pressure system was conducive 

to more heat waves in Southeast Asia [49]. The strengthening and westward expansion of 

the WNPSH could result in strong descending motion and solar radiation, both of which 

may have contributed significantly to the region’s sea surface warming. 

Correlation coefficients between MHW and WNPSH indices from 1982 to 2020 were 

calculated before and after detrending (Table 2). The absolute correlation coefficients (r) 
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between the area index, intensity index, and Westward ridge point index of the WNPSH 

and PC1s time series before and after detrending were all greater than 0.50 (exceeding the 

0.01 confidence level), although the correlation coefficients decreased after detrending. 

However, there is no clear link between the RI, representing the meridional displacement 

of WNPSH and PC1s, with r below 0.05 confidence level. Both the long-term trend and 

the variabilities of the zonal displacement and intensity of WNPSH are likely responsible 

for the MHWs, according to the above findings. Regionally, the results were congruent 

with those of other studies on land heatwaves [49]. 

 

Figure 9. The GHT500 anomalies (shaded, units: gpm) and the WNPSH represented by a black con-

tour of 5870 gpm in the warm season (May–September) 1982–1992 (a) and 2010–2020 (b). Anomalies 

are relative to the mean climatology of May–September 1983–2012. The mean position of WNPSH 

is denoted by the green contour line of 5870 gpm and the blue contour line of 5880 gpm at 500-hPa. 

 

 

Figure 10. Regression patterns of detrending GHT500 fields (unit: gpm) onto the detrend PC1s time 

series of the MHWN (a), MHWD (b), and MHWI (c), from 1982 to 2020, respectively. The dotted 

areas exceed the 95% confidence level. 
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Table 2. Correlation coefficients (r) between the WNPSH indices and the MHW indices temporal 

series from 1982 to 2020, with and without detrending. 

Index 
r r (Detrended) 

MHWN MHWD MHWI MHWN MHWD MHWI 

Area index (AI) 0.76 * 0.76 * 0.75 * 0.70 * 0.67 * 0.66 * 

Intensity index (INI) 0.7 5 * 0.77 * 0.75 * 0.69 * 0.69 * 0.68 * 

Ridge line index (RI) −0.27 −0.19 −0.20 −0.36 −0.28 −0.27 

Westward ridge point index 

(WRI) 
−0.75 * −0.64 * −0.63 * −0.57 * −0.51 * −0.51 * 

Asterisk * denotes that coefficients are significant and exceed the 0.01 level (0.39) under the t-test 

[53]. 

To get a deeper comprehension of the role of the WNSPH in the genesis of MHWs, 

we further examine the evolution of the synoptic characteristics connected to MHWs. The 

composite charts from 6 days before the starting date of 28 MHW events selected from all 

37 MHWs (see Subsection 2.4) were placed at a 2-day interval from top to bottom (Figure 

11). These patterns illustrate the temporal evolution of GHT 500 anomalies linked with 

MHWs in the SCS. The positive anomaly center of GHT 500 emerges around (135°E, 15°N) 

6 days before the MHW onset (Day -6) (Figure 11a). This positive center steadily strength-

ened, traveled westward over time, and was positioned at the center of SCS (122°E, 15°N) 

on 2 and 4 days before the MHWs onset (Day -2 and Day -4, Figure 11b,c). On Day 0, when 

the MHWs start, these anomalies greatly intensify, spread southwestward, and finally 

cover most of the SCS. According to the findings, there is considerable correspondence 

between the temporal evolution of the GHT500 anomalies and MHW emergence. It con-

firmed that the westward displacement and intensification of the WNPSH may be crucial 

for the formation of MHWs in the SCS. Previous studies of the WNPSH motion also indi-

cated that the WNPSH mechanism played a vital role in the onset and termination of ter-

restrial heat waves in southern China [49]. 
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Figure 11. Composite chart of GHT 500 anomalies (shading) before the regional MHWs onset. Day 

0 represents the first day of MHW, and Day -2 represents two days prior to Day 0, Day -4 represents 

four days prior to Day 0, and so on. 

4. Discussion 

Human-induced climate change is causing upper ocean warming globally and has 

led to observed increases in the frequency, length, and severity of MHWs in recent dec-

ades [5,11]. These MHWs threaten marine biodiversity and ecosystems, increase the like-

lihood of extreme weather, and negatively impact the fisheries, aquaculture, and tourism 

industries and therefore attract significant scientific and public interest [4,54]. Little work 

has been conducted on SCS MHWs, despite the frequency, length, and severity being com-

parable to other typical areas, such as the Mediterranean [6] and the Tasman Sea [12]. 

It is essential to acknowledge that there are still gaps in our understanding of MHWs. 

From the definition of MHWs [32], it can be seen that the baseline period of SST is crucial 

and can directly affect the percentile metrics of MHWs. Hobday et al. suggested a fixed-

baseline period of 30 years, considering the limited time coverage of SST data and the 

influence of natural oscillation such as ENSO. The method of defining MHWs using the 

relative threshold of fixed-baseline periods has been broadly adopted. However, as the 

ocean warms, the real temperature itself will shift, and rising mean SST might increase 

SCS MHWs. Oliver (2019) [43] emphasized that SST mean warming, not variability, dom-

inated the MHW trend. Therefore, some researchers propose to use a moving baseline to 

describe MHWs, which is more advantageous for describing short-term SST fluctuations 

[4,55]. Both methods of calculating baseline climatologies are complementary; the choice 

depends on the questions posed. A fixed-baseline period is particularly relevant when 

examining ecosystems with a slow or even no adaptive capacity and displaying overall 

changes, including long-term warming effects. Moving-baseline periods are most benefi-

cial for considering ecosystems with a faster adaptation capacity or greater mobility and 

for studying physical climate characteristics with a focus on variability rather than long-

term warming, as this approach primarily reflects shorter-term variability changes. To this 

end, research suggested that combining both approaches can effectively distinguish the 

effects of long-term warming from changes in the magnitude of variability [4]. 

The primary focus of this work is on the first dominant modes of MHWs, and their 

connections to the major atmospheric circulation system—WNPSH. Multiple processes 

from ocean basins affect the variability of the WNPSH [56,57]. Previous studies have 

demonstrated that the unusual WNPSH in summer is closely related to the ENSO decay-

ing phase, with the rapid decay of El Niño being more favorable to a stronger WNPSH 

than the slow decaying of El Niño. If a La Niña event has already formed in summer dur-

ing the El Niño decaying year, the strongest WNPSH will occur [13,58]. An incipient La 

Niña suppresses central Pacific local convection, generating a westward propagated at-

mospheric Rossby wave that could strengthen the WNPSH [56,57]. Enhanced convection 

over the Maritime Continent associated with the La Niña strengthens the WNPSH by 

modulating local Hadley circulation with increased anticyclonic circulation over the 

northwestern Pacific [59]. 

In addition, it is necessary to emphasize that MHWs are modulated by a wide range 

of physical mechanisms, not just atmospheric circulation, spanning from local dynamics 

to distant processes via teleconnections on various spatial and temporal scales [42,45]. In 

recent studies, researchers highlighted the significant interannual and interdecadal varia-

bilities of SCS MHWs events and their associations with large-scale climate modes, such 

as ENSO [14,60]. They note that more MHWs were likely to occur in the SCS during the 

following summer after the El Niño events, which has important implications for the pre-

dictability of the SCS MHWs. Moreover, some research suggested that other factors, such 

as local upwelling and entrainment, which were weakened or even disappeared, and the 

Arctic amplification links to the Rossby wave, which moved more slowly in the upper-

level flow, could enhance the possibility of MHWs [13,61]. Yet, in comparison with the 
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AHWs occurring over the coastal hinterland of the South China [49], there is far less 

knowledge on which factors and to what extent could cause the interdecadal and interan-

nual variability in MHWs in the SCS. A deeper understanding of the mechanisms of 

MHWs and the relative effects of these drivers in the SCS requires more investigation, 

especially some quantitative studies. 

Recent MHWs with high scientific and public attention include the 2014/15 North 

Pacific MHW, the 2015/16 and 2017/18 Tasman Sea MHWs, etc. [12,25,46]. These events 

heavily impacted fisheries and aquaculture, in addition to causing coral bleaching and 

seagrass mortality. Much less concern is given to the severe MHWs in the SCS, let alone 

some mild or moderate events, despite their devastation of marine ecosystems and the 

services they provide. On the Nansha Islands in the SCS, there are around 8000 km2 of 

coral reefs that provide a substantial number of people with goods and services. The mul-

tiple metrics (duration, intensity and heating rates, etc.) and thermal structure of MHWs 

that induce coral bleaching in this region have not been previously studied, though there 

are notable relationships between MHWs and coral bleaching. Finding and exploring the 

connection between cumulative intensity (i.e., accumulated heat stress) and coral mortal-

ity at regional scales is highly encouraged. Moreover, the local government has not yet 

implemented any systematic real-time monitoring, sub-seasonal, and seasonal forecasting 

systems to help marine managers and industries cope better with MHWs. Consequently, 

specific studies will be required to solve these issues in the SCS. 

5. Conclusions 

MHWs, extreme water events, can occur at any time of the year. This paper mainly 

focused on the warm season MHWs in the SCS, which can easily exceed organisms’ ther-

mal thresholds (e.g., coral reefs) and lead to severe coral bleaching and mass mortality. 

Results showed that during the study period (1982–2020), MHWs had been enhanced 

across most of the SCS in terms of increasing frequency, prolonged duration, and strength-

ening intensity. The strongest signals of the enhancements were primarily found in coastal 

regions at shallow water and higher latitudes in the north SCS, and the enhancements 

were almost twice those in the south SCS. 

The multiscale variations of warm season MHWs metrics (i.e., MHWN, MHWD, and 

MHWI) in the SCS were analyzed using an EOF method. The first leading EOF (EOF1) 

modes of MHWN, MHWD, and MHWI explain 56.8%, 64.5%, and 52.6% of the total vari-

ance, which account for more than half of the total variance. All of the EOF1 spatial pat-

terns reveal a consistent variation of a homogeneous structure. The corresponding PC1s 

time series display distinct interdecadal variations with a turning point in each time series 

around 2010. Second EOF (EOF2) modes of MHWN, MHWD, and MHWI explain only 

8.1%, 8.4%, and 8.1% of total variations, respectively. The spatial distribution variations 

of these modes are the meridional di-pole pattern with anomalies of opposing signs in the 

north and south of the SCS. The corresponding PC2 time series exhibited high interannual 

variations. It is worth noticing that the amplitude of PC2 has also increased dramatically 

since 2010. 

Understanding the variability of MHWs and their relation to large-scale circulation 

can be important for predicting MHWs. By linking the first dominant modes with the 

large-scale atmospheric circulation, it is clearly shown that the warm season MHWs in the 

SCS were commonly featured with anomalous high-pressure system-WNPSH, and ac-

companied by local calm wind, descending motion, less cloud cover, and enhanced solar 

radiation heating at the surface. In the majority of the SCS, the regression coefficients be-

tween the natural variabilities of the three PC1 time series and the natural variabilities of 

GHT 500 are all significantly positive. Our study highlights the more important role of 

WNPSH’s area, intensity, and westward ridge point location than ridge line location. The 

evolution of the MHWs was associated with the westward displacement of WNPSH, with 

the notable and amplified positive anomaly in GHT 500 migrating westward. 
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MHWs have become one of the major challenges facing the sustainable development 

of marine ecosystems and environment. In the context of continuous global warming, 

MHWs are predicted to increase in frequency, duration, and intensity in most regions 

[3,5,6]. Regional capacity building for MHW monitoring, prediction, and forecasting must 

be strengthened. Recent research demonstrated that the occurrence of MHWs was mostly 

related to large-scale atmospheric and oceanic modes, especially low-frequency climate 

modes (such as ENSO and WNPSH). Therefore, we highlight the potential of predicting 

and forecasting and provide a foundation for a much-needed operational MHW forecast 

system [55]. There is still work to be done in the future to improve the accuracy of the 

prediction system for MHWs through more research on the synergies among various cli-

mate mode impacts on MHWs, the development of high-resolution models, and artificial 

intelligence prediction technologies over the SCS. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/rs14225829/s1. Figure S1. Spatial patterns of linear SST 

changes (units: ℃ per decade) in the SCS in warm season during 1982-2020. 
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