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Abstract While previous studies have largely focused on anthropogenic warming characterized by surface
air temperature, little is known about the behaviors of human‐perceived temperature (HPT), which describe the
“feels‐like” equivalent temperature by considering the joint effects of temperature, humidity and/or wind speed.
Here we adopted an optimal fingerprinting method to compare seasonal mean HPTs in China with those from
simulations conducted with multiple climate models participating in the Coupled Model Intercomparison
Project Phase 6. We found clear anthropogenic signals in the observational records of changes in both summer
and winter HPTs over the period 1971–2020. Moreover, the anthropogenic greenhouse gas influence was
robustly detected, with clear separation from natural and anthropogenic aerosol forcings. The anthropogenic
greenhouse gas forcing plays the dominant role (>90%) of human‐perceived warming. Urbanization effects
contribute slightly and moderately to the estimated trends in summer and winter HPTs, respectively, in addition
to the effects of external forcing.

Plain Language Summary Human influences have been identified in the observed warming
quantified by surface air temperature (SAT), but SAT alone is inadequate as a metric for human thermal
comfort. Here we focus on human‐perceived temperature (HPT), which describes the “feels‐like” equivalent
temperature by considering the joint effects of temperature, humidity, and/or wind speed. We isolate
anthropogenic impacts on the observed increase in summer and winter HPTs in China during 1971–2020 by
comparing observations with state‐of‐the‐art climate models. Results show that the influence of anthropogenic
greenhouse gas is detected, with clear separation from other external forcings such as solar and volcanic
activities and anthropogenic aerosols. The human‐induced greenhouse gas increases are also found to explain
most (>90%) of the observed human‐perceived warming. Along with the effects of large‐scale anthropogenic
forcing, urbanization effects also have a slight to moderate influence on the estimated trends in summer and
winter HPTs. Our work is an early attempt to provide quantitative evidence for the physiological impacts of
anthropogenic global warming and local urbanization on human beings.

1. Introduction
Due to the rapid global warming that has occurred over the past century and its profound impacts on human
society, climate change has come under more and more scrutiny from governments, the public, and the media.
According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), the global
mean near‐surface temperature in 2011–2020 was 1.09 [0.95 to 1.20] °C higher than the preindustrial level
(IPCC, 2021). As global mean temperature rises, the warm temperature extremes have increased and the cold
extremes have decreased since the mid‐20th century in most global land regions (Alexander et al., 2006; Dunn
et al., 2020; P. Zhang et al., 2019; H. Zhang et al., 2023).

Although the global warming revealed by temperature‐based observations are large and significant, they may not
always be consistent with how people feel because the human body's thermal sensations are determined by the
combined influence of meteorological factors such as temperature, humidity, wind speed, and solar radiation (de
Freitas & Grigorieva, 2015; F. Wang et al., 2022). In hot summers, high humidity prevents perspiration from the
skin to the environment, aggravating heat stress for people (Lin et al., 2019; J. Zhang et al., 2023). By contrast,
high wind speed during cold winters can swiftly reduce the body's ability to store heat and significantly aggravate
how chilly people feel. Human‐perceived temperature (HPT) describes the “feels‐like” equivalent temperature by
considering the joint effects of the aforementioned meteorological factors (J. Li et al., 2018; Y.Wang et al., 2019).
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Evidence has shown that extreme HPTs, including heat stress and wind chill, could reduce labor productivity and
lead to illnesses and even fatalities (Dunne et al., 2013; Patz et al., 2005). Meanwhile, the usage of natural re-
sources (e.g., fossil fuels for heating and air conditioning) and ensuing economic expenditures are also increased
to reduce human discomfort from extreme HPTs. Therefore, there is great value in studying HPT from a
climatological perspective.

A better understanding of external drivers for these changes in thermal conditions represents an important basis
for reliable future projection and sets an important scientific basis for climate change adaptation policy‐making, in
particular for a densely populated region such as eastern China. China has been rapidly warming since the 1960s
at a rate that is almost twice as fast as the average change in the world. Estimates based on in situ observations
indicate that the annual mean surface air temperature (SAT) increased by 1.44°C over the period 1961–2013,
which can be attributable to greenhouse gases, other anthropogenic forcing (dominated by aerosols), and the
impacts of urban heat islands (Y. Sun et al., 2016). Other studies have further confirmed the dominant role of
anthropogenic forcings in temperature change (Xu et al., 2015; Yin & Sun, 2023). In addition, the signal of
anthropogenic forcing can be detected in long‐term changes in extreme temperatures in China (Hu & Sun, 2022;
Lu et al., 2016; Yin et al., 2017). Anthropogenic forcing was proven to increase the probability of extreme
summer heat in eastern China (Y. Sun et al., 2014). However, the aforementioned studies merely considered the
role of temperature, which is not sufficiently representative of human‐perceived warming. In response to this
knowledge gap, several studies addressing long‐term changes in HPTs in China have recently emerged (Luo &
Lau, 2019; Ning et al., 2022). In addition, there are also studies (J. Li et al., 2018; Wu et al., 2017; J.‐T. Zhang
et al., 2022) suggesting that China has experienced an increase in warm‐uncomfortable days and a decrease in
cold‐uncomfortable days over the past decades from the perspective of HPT. However, the aforementioned
studies did not fully address what caused the change. Although recent studies reported that human influences have
increased the probability of summer compound heat‐humidity extremes (Kong et al., 2020; C. Li et al., 2020; D.‐
Q. Wang & Sun, 2022), it cannot be assumed that those results are directly and comprehensively indicative of
potential human influences on HPT (both heat stress and wind chill) in China. Moreover, to the best of our
knowledge, similar detection and attribution studies have not been conducted in other regions.

This study aims to investigate the possible human influence on HPTs in China and pay particular attention to the
possibility of separating the influence of anthropogenic greenhouse gases from other forcings such as aerosols, as
the availability of simulations from the Detection and Attribution Model Intercomparison Project (DAMIP;
Gillett et al., 2016) component of the Coupled Model Intercomparison Project Phase 6 (CMIP6; Eyring
et al., 2016) offers a unique opportunity to do so. By comparing the evolution of HPT in the observations and
model simulations under different external forcings, we investigate whether the anthropogenic influence is
detectable in the historical seasonal mean HPT changes. This is done using statistically rigorous “fingerprint”
analysis.

The paper is organized as follows. Section 2 describes observational and model data used in this study, along with
an introduction to the data processing and attribution analysis method.We then present the results in Section 3 and
conclude the study in Section 4.

2. Data and Methods
2.1. Human‐Perceived Temperatures

Following previous studies (Ding et al., 2021; Y. Wang et al., 2019; J. Zhang et al., 2023), we adopted the wet
bulb globe temperature (WBGT) and the wind chill temperature (WCT) to measure heat and cold perceived
temperatures, respectively; accordingly, WBGT (WCT) was calculated for the summer (winter) months.

Specifically, the WBGT (°C) is calculated as a weighted value of daily mean SAT (T, °C) and wet bulb tem-
perature (WBT, °C), as WBGT = 0.3T + 0.7WBT, where WBT is calculated based on daily mean SAT and
relative humidity using the estimator of Stull (2011). Other more sophisticated WBGT estimates require addi-
tional variables such as wind speed, solar radiation, and surface air pressure (e.g., Davies‐Jones, 2008; Lemke &
Kjellstrom, 2012; Liljegren et al., 2008), while reliable observations and simulations for some of these variables
are limited. Although we acknowledged that WBT is adopted to measure human heat stress in some climate
change studies (e.g., Pal & Eltahir, 2016; Raymond et al., 2017; P. Wang et al., 2021), WBT is not well calibrated
as a heat stress metric and no safety thresholds are recognized by the medical community (Schwingshackl
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et al., 2021; Sherwood, 2018; J. Zhang et al., 2023). Therefore, we employed WBGT instead of WBT in this
study.

When − 50°C ≤ T ≤ 10°C, the WCT can be calculated from daily mean SAT (T, °C) and wind speed (V, m s− 1) as
follows (Ding et al., 2021; Osczevski & Bluestein, 2005)

WCT =
⎧⎨

⎩

13.12 + 0.6215T − 13.9563V0.16 + 0.4867TV0.16,V ≥ 1.389

T − 1.1448V + 0.0968TV,V < 1.389
(1)

When T > 10°C, the WCT is defined by the universal apparent temperature calculated from T, V, and water vapor
pressure (P, kPa) from Steadman (1984).

WCT = − 2.7 + 1.04T + 2P − 0.65V (2)

2.2. Observations

We used daily mean SAT, relative humidity, and wind speed observations from 2,419 national meteorological
stations in China's mainland, which have been strictly quality‐controlled, including checks for climatological,
station, and regional outliers, and for internal, temporal, and spatial consistency (Ren et al., 2012). Temperature
and relative humidity data have been further homogenized (Cao et al., 2016; Zhu et al., 2015). Given that data
before 1970 contains a significant number of missing values and that the observational instrumentation underwent
a significant change in the late 1960s (X. Li et al., 2022; Yang et al., 2021), the study period was defined as 1971–
2020. Note that the 1971 winter consists of data averaged from November 1970 through March 1971, the 1972
winter consists of data averaged from November 1971 through March 1972, and so on. Daily HPTs can be
calculated on this basis.

We used the following criteria to select stations for the subsequent analysis: (a) the percentage of missing data
throughout the study period is no more than 0.2%, and (b) the percentage of missing data for any of these years is
no more than 5%. As a result, a total of 2112 (1638) stations were selected for investigating summer (winter)
HPTs, and their distribution is shown in Figure S1 in Supporting Information S1. The missing records were
replaced by the climatological mean value of the same calendar day for the given station.

For each station, we calculated the mean WBGT for extended summer (May–September) and the mean WCT for
extended winter (November–March) by averaging daily values over the five months. Summer WBGT (winter
WCT) anomalies relative to a 1971–2000 baseline period were then computed. The resulting station anomalies are
aggregated to 5° × 5° grid cell anomalies by averaging all available station anomalies within a predefined grid cell
(Figure S1 in Supporting Information S1). The regional‐averaged anomalies were obtained by area‐weighted
averaging of the values of all the grids, with the weights assigned as the cosine midlatitude values of the grids
(Ren & Zhou, 2014).

2.3. Model Data

Daily mean SAT, relative humidity, and wind speed outputs from global climate models participating in CMIP6
were adopted in this study. First, we used the historical (ALL) simulations for 1971–2014, where climate models
are forced with both anthropogenic (greenhouse gas and aerosol) and natural (solar and volcanic) external
forcings. Each ALL simulation has been extended until 2020 by using the SSP2‐4.5 scenario simulation (O’Neill
et al., 2016). To explore the influence of individual external forcings, we also utilized historical individual forcing
simulations for 1971–2020, including hist‐GHG (GHG), hist‐aer (AER), and hist‐nat (NAT) experiments, where
climate models are forced with only greenhouse gas, anthropogenic aerosol, and natural external forcing,
respectively (Gillett et al., 2016). Simulations from eight CMIP6 models, which provide necessary data for all
experiments of GHG, AER, and NAT with a minimum of three ensemble members, were used here (Table S1 in
Supporting Information S1). Signals (i.e., model‐simulated responses) are computed as multi‐model ensemble
mean (MME), which is done by first computing the arithmetical average for each model ensemble and then
averaging the individual model means. In addition, we also used 386 nonoverlapping 50‐year segments from
unforced preindustrial control simulation (CTL) of 33 CMIP6 models to estimate natural climate variability
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(Table S1 in Supporting Information S1). These 48‐year segments, which are the same length as the observed
record (1971–2020), are assigned calendar dates by designating the first year in each segment as 1971.

The model‐simulated summer WBGT and winter WCT can be calculated similarly. All of the season mean HPTs
were converted to anomalies relative to 1971–2000 and then remapped to the 5° × 5° grid. To ensure a fair
comparison between observations and models, the remapped model data sets were masked according to the
availability of observational data.

We acknowledged that detection and attribution assessments heavily rely onmodel simulations, thus it's critical to
compare the results of model simulations to observations in order to increase confidence in the accuracy of the
attribution results. It is shown that CMIP6 models adopted in this study reasonably reproduce the observed
nonsecular interannual variability in seasonal mean HPTs, that is, the variability in the detrended seasonal mean
HPTs (Figure S2 in Supporting Information S1). Similarity of the secular component of the seasonal mean HPT
variability will be demonstrated in the subsequent detection and attribution analysis (Section 3).

2.4. Detection and Attribution

In this study, we employed the regularized optimal fingerprinting technique (Ribes et al., 2013) as a method for
detection and attribution analysis to compare observed seasonal mean HPT changes to model simulations. This
technique regresses the observationsY onto model‐simulated signal patternsX, plus internal climate variability ε:
Y = (X − v)β + ε, where v represents the influence of natural internal variability in the modeled signal patterns.
The regression coefficients β are unknown scaling factors that will be estimated via a total least square method
(Allen & Stott, 2003). If the 90% confidence interval of β falls above zero, the corresponding modeled signals are
considered to be detected in the observations. In these cases, if the 90% confidence interval of β also includes one,
then the modeled responses are considered to be consistent with the observations (Allen & Stott, 2003; Ribes
et al., 2013).

The observational vector, Y, which describes the spacetime evolution of HPTs, is comprised of non‐overlapping
five‐year‐mean HPTs over two spatial dimensions representing eastern and western China. The 50‐year record
(1971–2020) generates 10 non‐overlapping five‐year averages. The east‐west partitioning divides the country into
two regions, with eastern China (EC; east of 105°E) having a typical monsoon climate and western China (WC;
west of 105°E) having an arid or semiarid climate. This produces a 20‐dimensional observational vector. Because
of the distinct climates in the two regions, the division may offer a valuable contrast in signal patterns that can aid
in identifying the effects of various forcing factors on observations using the optimal fingerprinting technique
(Yin et al., 2017). We did not consider separate analysis for each region to reduce the risk of overfitting (C. Li
et al., 2020; Y. Sun et al., 2016). Model data segments from forced and control simulations were also processed
identically into 20‐dimensional vectors.

Single‐signal, two‐signal, and three‐signal analysis were performed in this study. For single‐signal analysis,
observed changes are regressed onto the forced response to historical ALL forcing. As the ALL forcing is a
combination of anthropogenic forcing (ANT) and natural external forcing (NAT), we also conduct a two‐signal
analysis of the ANT (ANT=ALL − NAT) and NAT signals to further distinguish the individual role of ANT and
NAT forcings in driving the observed changes. For three‐signal analysis, responses to GHG forcing, AER forcing,
and NAT forcing are involved simultaneously in the regression. A residual consistency test is applied to test
whether the modeled internal variability is consistent with that observed as represented by regression residuals
(Ribes et al., 2013).

We further estimated the changes attributable to the ALL forcing, and the GHG, AER, and NAT components of
ALL forcing, by computing trends in the ALL, GHG, AER, and NAT signals and then multiplying them by the
respective estimates of scaling factors (Hu & Sun, 2022). Note that such attributable changes were estimated
based on the single‐ (for ALL) and three‐signal analysis (for GHG, AER, and NAT). The linear trends in HPTs
were estimated by the least square method, and the 5% level is used to define the statistically significant trend
(Student's t‐test). For model simulations, in addition to the trend for MME, we also calculated trends for indi-
vidual models. If at least one significant individual trend differs in the sign of the ensemble mean trend, it is
considered as “uncertain”; if the “uncertain” condition is not fulfilled and less than half of the individual trends are
significant, it is considered as “negligible”; otherwise, the modeled signals are referred to as “robust” (J. Zhang
et al., 2022).
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In addition to the aforementioned external forcing factors, rapid urbanization in China in recent decades may have
had a considerable effect on the estimated trends in HPTs, as urbanization alters the surface energy budget and
results in higher temperatures in urban areas than in surrounding rural areas (Kong et al., 2020; Y. Sun et al., 2016;
Y. Wang et al., 2019; Luo & Lau, 2021). To quantify this effect, following Tysa et al. (2019), the meteorological
stations were classified into rural and urban stations, where the proportions of land use/land cover in different
buffer areas around the stations were considered. The selection of rural station networks also referred to Ren
et al. (2015), which considered the need to meet conditions of good continuity and integrity in the observational
data, with more emphasis on the relocation of stations and the immunity of stations to the urbanization effect. For
analysis of summer (winter) HPT, A total of 234 (192) stations were finally chosen as rural stations, while the
remaining 1,878 (1,446) stations were considered urban stations (Figure S1 in Supporting Information S1). We
first calculated the grid‐averaged seasonal HPTs series of the national and rural stations for each grid, subse-
quently the regional‐averaged HPTs series of the national and rural stations can be obtained. The urbanization
effect (UE), which refers to the impact of urbanization on HPT trends, is defined as the difference between the
national trend and the rural trend: ∆Tu‐r = Tu‐Tr, and the relative urbanization contribution in percentage is given
by UC = |∆Tu‐r/Tu| × 100% (Ren & Zhou, 2014).

Following Kong et al. (2020), we further adjusted the contributions of external forcings according to the con-
tributions of urbanization:

coefadj =
CALL

ĈALL
=

Cwhole × (1 − UC)
ĈALL

(3)

Ĉx,adj = Ĉx × coefadj (4)

where Ĉx (x = ALL, GHG, AER, NAT) is the estimated changes attributable to external forcing (see the previous
paragraph), Cwhole is the observed change in HPTs over 1971–2020 (i.e., linear trend value multiplied by
50 years).

3. Results
3.1. Widespread Increases in HPTs in China During the Past Decades

Figure 1 shows trends in seasonal mean HPTs since 1971 in the observations and modeled responses to different
forcings. Both summer and winter have significantly increased over all regions where there are sufficient data,
with the most pronounced increases occurring in the northern part of China (Figures 1a and 1g). This trend pattern
is also similar to that of seasonal mean SAT (Figures 2a and 2d), suggesting the dominant role of the rising air
temperature in producing human‐perceived warming. Seasonally, the upward trend in the country‐averaged
summer HPT (0.27°C/decade) resembles that in summer air temperature (0.29°C/decade), which can be
explained by the fact that relative humidity exhibits little trend in almost all regions (Figure 2c). In contrast, the
increasing trend in the country‐averaged winter HPT (0.54°C/decade) is considerably greater than that in winter
mean SAT (0.38°C/decade), suggesting the role of other meteorological factors. It is shown that the winter mean
near‐surface wind speeds have declined significantly in the majority of China, and while this trend has been
reversed in some regions in the last decade or two (Ding et al., 2021; X. Li et al., 2022), the overall trend since
1971 is still declining (Figure 2f). The combination of rising temperatures and weakening winds leads to rapid
human‐perceived winter warming over China. In addition, we also recognize a slowdown of warming in winter
HPT after the late 1990s (Figure 3b), which is in line with previous studies (X. Sun et al., 2017; Ding et al., 2021;
J.‐T. Zhang et al., 2022). Both the insignificant trend of mean temperature and the increasing trend of the wind
speed contribute to the slowdown of the human‐perceived winter warming after the late 1990s, and this conjoint
contribution could be linked to the decadal variability of East Asian winter monsoon circulations (Ding
et al., 2021).

Widespread increases in seasonal mean HPTs are also found in simulations when anthropogenic emissions of
greenhouse gases are included as external forcing. The spatial pattern of the trends in ALL responses roughly
resembles that observed (Figures 1c and 1i). The observed trends lie within the range of trends in the ensemble
of multi‐model simulations in all grid cells except some isolated outliers where the observations show weaker
(stronger) warming trends in summer (winter) HPTs (Figure S3 in Supporting Information S1). The GHG
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responses have a trend spatial pattern similar to the ALL responses (Figures 1d and 1j), and capture the
majority of the observed trends as well (Figure S3 in Supporting Information S1). By contrast, trends in the
NAT responses are very small and negligible (Figures 1e and 1k), and the observed trends lie above the 95th
percentile of trends computed from individual NAT runs in all grid cells (Figure S3 in Supporting Infor-
mation S1). In addition, the AER response exhibits an overall weak cooling pattern, despite the uncertainties
in the results of the individual models (Figures 1f and 1l). The observed time series of country‐averaged
seasonal mean HPTs is generally within the range of simulations under ALL forcing, but it is all above
the range of simulations under NAT forcing. All modeled responses to ALL and GHG show positive trends.
Trends in the modeled responses to NAT forcing are very weak. The AER responses show a weak negative
trend for winter HPT (Figures 3a and 3b).

Considering that the in situ observation data have a systematic bias caused by urbanization around the
observational sites in many regions over the past decades (Ren & Zhou, 2014; P. Zhang et al., 2021), we further
evaluate the urbanization effect on estimates of trends in season mean HPTs based on differences in national
and rural trends. The urbanization effect for China as a whole is 0.02 and 0.27°C per 50 yr, for summer and
winter HPTs, respectively, all statistically significant at the 5% significance level, with urbanization

Figure 1. Spatial distribution of linear trends in seasonal mean HPTs during 1971–2020 from observations (OBS), the
urbanization effect (UE), and CMIP6 multi‐model simulations forced with all forcing (ALL), only greenhouse gas (GHG),
anthropogenic aerosol (AER), and natural forcing (NAT). (a)–(f): Summer mean HPT. (g)–(l): Winter mean HPT. The
crosses in observational results, that is, OBS and UE, indicate the trends are NOT statistically significant (p > 0.05). The
crosses and dots in model‐simulated results, that is, ALL, GHG, NAT, and AER, indicate negligible and uncertain trends,
respectively.
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contributions being 1.8% and 10.4%, respectively. More grids register significant positive urbanization effects
for winter HPT than for summer HPT (Figures 1b and 1h). Correspondingly, the urbanization contribution to
summer and winter mean SAT is 8.2% and 9.5%, respectively (Figures 2b and 2e). The lower urbanization
contribution to summer HPT lines up with earlier research that found the urban dry island effect (Huang
et al., 2022; P. Wang et al., 2022) partially negates the impact of higher air temperatures and consequently
moderates urban heat stress, which is characterized by HPTs (Chakraborty et al., 2022; X. Wang &
Gong, 2010). By contrast, it is anticipated that the urbanization‐induced decline in surface wind speed (Z. Li
et al., 2018; Lin et al., 2019) will widen the gap in the winter wind chill temperature between rural and urban
areas, and further increase the winter mean HPT at the urban stations.

3.2. The Increase in HPTs Is Driven Primarily by Human Influence on the Climate

In this section, we report results from fingerprinting analysis confirming statistical evidence for the role of
human influence in the observed long‐term HPT increase. For single‐signal analysis, the estimates of the
scaling factors for both summer and winter HPTs are greater than zero, indicating that the ALL signals are
robustly detected at the 5% significance level (Figures 3c and 3d). Seasonally, the best estimate of the scaling
factor for summer (winter) HPT is marginally smaller (greater) than one, indicating that available CMIP6
models slightly overestimate (underestimate) the rate of the human‐perceived warming in summer (winter).
This bias in the model‐simulated results also presents in the upward evolution of seasonal mean air tem-
peratures over the same period (Figure S4 in Supporting Information S1). Estimates of the ANT and NAT
scaling factors from two‐signal analysis suggest that the ANT signals can be detected, while the NAT signals
cannot be detected, for both summer and winter HPTs (Figures 3c and 3d). For summer (winter) HPT, the
90% confidence interval of the scaling factor is approximately one (exceeded one), indicating that the ANT
responses from analyzed CMIP6 models are consistent with observations (tend to slightly underestimate the
observed changes). The detectability of ALL and ANT forcings does not appear to have been affected,
although a slowdown of warming in winter HPT after the late 1990s is evident. This study is the first one to
provide direct evidence for the dominant anthropogenic role in the observed human‐perceived warming in
China, despite similar analysis for summer/winter mean SAT suggests that anthropogenic influence is
dominant, while natural influence is not detectable, at the same significance level (Figure S4 in Supporting
Information S1).

Figure 2. Spatial distribution of observed linear trends in seasonal mean temperature and other relevant meteorological
variables during 1971–2020. (a)–(b): Summer mean near‐surface air temperature. (c): Summer mean near‐surface relative
humidity (RH). (d)–(e): Winter mean near‐surface air temperature. (f): Winter mean near‐surface wind speed (SWS). The
crosses indicate the trends are NOT statistically significant (p > 0.05).
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Furthermore, for three‐signal analysis, only the GHG signal can be detected when the signals of GHG, AER, and
NAT are considered simultaneously. This result holds for both summer and winter HPTs (Figures 3c and 3d).
Similar to the ANT forcing results, the best estimates of scaling factors for GHG forcing were greater than one for
winter HPT and close to one for summer HPT. We also performed the same three‐signal analysis for SAT as for
HPT (Figure S4 in Supporting Information S1). While showing the similar detectability, it cannot be assumed that
those results are directly and comprehensively representative of the human‐perceived warming. The AER signals
are not detectable in this study, either for HPT or for SAT (Figure 3 and Figure S4 in Supporting Information S1),
despite prior studies reporting that they can be detected for observed temperature changes in China since the
1950s in some cases (Hu& Sun, 2022; Yin & Sun, 2023). This suggests low detectability of the AER signal within
a short period against natural variability. The low AER signal detectability is probably due to the shorter period
analyzed in this paper than those in previous works, and the alleviation of air pollution over the last two decades
(Sogacheva et al., 2018). It may also have been related to the strong collinearity between the GHG and AER
results (DelSole et al., 2019; Jones et al., 2013).

It is noticed that the confidence intervals of the scaling factors for summer HPT are generally narrower than those
for winter HPT, suggesting that human influence is more detectable in summer warming, which is in line with
previous SAT‐based studies (Yin & Sun, 2023; Zhou & Zhang, 2021). Moreover, the residual consistency test
passed for all the above cases, indicating a good agreement between model‐simulated variability and observations
(Allen & Stott, 2003).

We further estimate the human‐perceived warming attributable to the urbanization effect, ALL forcing, and
the GHG, AER, and NAT components of ALL forcing (Figures 3e and 3f). The observed country‐averaged
summer and winter HPTs increased by approximately 1.35°C (90% confidence interval 1.17–1.52°C) and
2.69°C (2.17–3.20°C), in which the ALL contributed to 1.32°C (1.03–1.61°C) and 2.41°C (1.72–3.11°C) of
warming, respectively. The warming rate of HPTs is higher at urban stations than in rural stations, and
quantitative attribution analysis shows that urbanization contributes to 1.8% and 10.4% of the human‐

Figure 3. Results of detection and attribution analysis for seasonal mean HPTs. (Left column; a–b) Time series of five‐year
mean anomaly values (relative to 1971–2000) for country‐averaged summer and winter HPTs, based on the observations
(OBS; black) and the CMIP6 multi‐model response to the ALL (red), GHG (green), AER (brown), and NAT (blue) forcings.
The red and blue shadings in the time series show the 5%–95% range of the ALL and NAT simulations, respectively. The
urbanization effect (UE), expressed as the differences between the urban and rural stations, is shown in purple curves. The
corresponding linear trends are shown in the immediate right panel. (Middle column; c–d) Best estimates of scaling factors
and their 5–95% confidence intervals from single‐signal analysis for ALL forcing, two‐signal analysis for ANT and NAT
forcings, and three‐signal analysis for GHG, AER, and NAT forcings in summer and winter HPTs for the period 1971–2020.
(Right column; e–f) Attributable contribution from ALL, GHG, AER, and NAT forcings, as well as UE, to observational
trend (OBS) in summer and winter HPTs for the period 1971–2020, and their 5–95% confidence interval (error bars).
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perceived summer and winter warming over China since the early 1970s, respectively. The GHG contributed
to 1.19°C (0.87–1.50°C) and 2.64°C (1.58–3.76°C) of warming for summer and winter HPTs, respectively.
The contributions of AER and NAT are not considered for both summer and winter HPTs, as their confi-
dence intervals included zero. The above results suggest that the GHG forcing is the dominant contributor
(>90%) to human‐perceived warming in both summer and winter. Although the AER forcing seems to
exhibit a cooling effect for winter HPT, it is not detectable at the 5% significance level. The NAT forcing
effects are negligible in all cases. As a sensitivity test, we also performed separate analysis for each region
(i.e., WC and EC), despite the potential for increasing the risk of overfitting. The results show that human
contributions at the regional scale are also similar to those at the national scale (Figure S5 in Supporting
Information S1).

4. Conclusion and Discussions
Although there is already overwhelming evidence that human influence has warmed the atmosphere beyond a
reasonable doubt (IPCC, 2021), it remains unclear to what extent external drivers contribute to “sensible” climate
change as perceived by the human body. Based on in situ observations and CMIP6‐DAMIP simulations, this
study investigates human‐perceived summer and winter warming over China. Clear evidence of warming is
observed in summer and winter HPTs, with magnitudes of 1.35 and 2.69°C over the period 1971–2020,
respectively. The CMIP6 models reasonably reproduce the aforementioned warming features, demonstrating
usually good agreement with observations in summer HPT but slightly overestimating observed changes in winter
HPT. The reasons behind these changes are further investigated from a viewpoint of external forcing by applying
an optimal fingerprinting method. Both the ALL and ANT signals can be detected in both summer and winter
HPTs. Moreover, the three‐signal detections suggest that the GHG signal can be clearly detected whereas the
AER signal is less detectable. The NAT forcing effects are negligible in all cases. Changes separately attributable
to different factors confirm the dominant role of the GHG forcing in human‐perceived warming. Urbanization
effects also have a slight to moderate influence on the estimated trends in summer and winter HPTs, respectively,
in addition to the effects of large‐scale anthropogenic forcing. Our study can provide a better understanding of the
physiological impacts of anthropogenic global warming and local urbanization on human beings and is crucial for
adapting to climate change at the regional scale.

Although HPTs have likely changed significantly for all seasons, here we concentrate on the hottest (summer)
and coldest (winter) situations, which are also the ones with the greatest impacts on human health. We
also acknowledged that more complex HPTs based on the human heat exchange model, such as Physiological
Equivalent Temperature (PET; Höppe, 1999) and Universal Thermal Climate Index (UTCI; Bröde
et al., 2012), are expected to give more accurate results, these HPTs, however, cannot be calculated from
the standard meteorological variables in observations and model outputs. Moreover, considering that there are
increasingly fewer stations in China that are completely free of urban influences, and the lowered standard
for determining the rural stations (Tysa et al., 2019), the urbanization effects and contributions estimated
by the differences in urban and rural HPT trends are likely to be conservative (Ren & Zhou, 2014; Y. Sun
et al., 2016).

Data Availability Statement
Outputs from CMIP6 models (Eyring et al., 2023) were used in the creation of this manuscript, which are
available at the Lawrence Livermore National Laboratory website (https://esgf‐node.llnl.gov/search/cmip6/). The
China Meteorological Data Service Center provides the daily observations. Because we are not authorized to
share original observed data, we archived all the processed data including observed and simulated HPTs on
Zenodo (Zhang et al., 2023), which is available at https://doi.org/10.5281/zenodo.10223710.
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