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Abstract

We use a recently-developed efficient probabilistic
estimation technique to estimate the sensitivity of the
Earth’s temperature to a doubling of atmospheric
carbon dioxide. The method is based on the ensemble
Kalman filter which we apply to the CCSR/NIES/
FRCGC AGCM (the atmospheric component of MIROC
3.2) at T21L20 resolution coupled to a slab ocean. The
method combines prior beliefs about the model, with ob-
servational data, to simultaneously estimate 25 model
parameters in an efficient and objective manner. We
perform a sensitivity analysis to investigate the effect of
different assumptions regarding model error, since this
is a necessarily subjective input which has not yet been
well characterised. We attempt to validate the resulting
ensembles against out-of-sample data by comparing
their hindcasts of the Last Glacial Maximum (LGM) to
paleoclimate proxy data, and demonstrate through this
that our ensembles of simulations are probably biased
towards too high a sensitivity. Within the framework of
our single-model ensemble experiment, we show that
climate sensitivity of much greater than 6°C is hard to
reconcile with the paleoclimate record, and that of
greater than 8°C seems virtually impossible. Our
estimate for the most likely climate sensitivity is in the
region of 4.5°C. Although these results are reasonably
consistent with the most widely accepted estimates of
climate sensitivity, they disagree with some recent
research which has suggested a significant probability
of sensitivities well in excess of these values. These
results suggest that paleoclimatic evidence could
provide a wuseful, albeit imprecise, constraint on
ensemble forecasts of future climate change.

1. Introduction

Estimates of the future response of climate to
anthropogenic forcing form an important input into the
policy-making process for mitigation and adaptation.
Evaluating the wuncertainty in model forecasts of
anthropogenically-forced climate change was identified
as a high priority in the IPCC TAR (Houghton et al.
2001) but despite much effort, substantial uncertainty
remains. Analyses of recent climate change data appear
to indicate that climate sensitivity (the equilibrium tem-
perature response to a doubling of atmospheric carbon
dioxide) has a substantial probability of being well in
excess of 6°C (Andronova and Schlesinger 2001;
Gregory et al. 2002; Knutti et al. 2002), and a recent
massive ensemble of GCM simulations illustrated that
such extreme behaviour can also be exhibited by state-
of-the-art models which simulate the present annually-
averaged climate state reasonably well (Stainforth et al.
2005). The behaviour of a coupled ocean-atmosphere
model on climatological time scales is highly dependent
on the details of parameterisations which cannot be ac-
curately determined from theory or direct observations.
In order to constrain this source of uncertainty, we have
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recently developed a computationally efficient multi-
variate parameter estimation scheme, based on the
ensemble Kalman filter (Evensen 2003), which has been
tested on a variety of highly nonlinear models (Annan
et al. 2005, and references therein). The method con-
structs samples according to the posterior joint prob-
ability distribution defined by a likelihood function,
rather than drawing samples from a diffuse prior and
then discarding (or substantially down-weighting) poor
samples as has been previously performed (Knutti et al.
2002; Murphy et al. 2004; Stainforth et al. 2005). In this
paper, we describe and present results from the first full-
scale application of this method, in which it has been
applied to simultaneously estimating 25 model parame-
ters in a state-of-the-art AGCM coupled to a slab ocean.
One critical input into the process is the estimate of un-
certainty of the model inadequacy (also called discrep-
ancy) (Kennedy and O'Hagan 2001) which has so far
received surprisingly little attention given its important
role in applications of this type (Annan and Hargreaves
2005; Rougier 2005). Since this term is as yet poorly
characterised, we have performed a range of experi-
ments using assumptions that we expect to cover the
plausible range of model inadequacy (both doubling and
halving our best prior estimate). This introduces an un-
avoidably subjective element into the estimation
process, so we test the forecast skill of the resulting en-
sembles by simulating out-of-sample data (i.e., data inde-
pendent of the modern data which were used to tune the
model). In particular, we simulate the Last Glacial
Maximum, a time when the climate was substantially
different to today. Although direct calculations of
climate sensitivity have been performed based on the
LGM state (e.g., Lea 2004), we do not believe that such
an approach to validation has been previously at-
tempted in ensemble-based climate prediction with a
state of the art GCM. From our LGM experiments, we
can draw some admittedly tentative conclusions as to
how skillfully our ensembles may be expected to predict
the climate under conditions of doubled carbon dioxide.

2. Methods

We use the CCSR/NIES/FRCGC AGCM at T21L20
resolution, coupled to a slab ocean on the same horizon-
tal grid. The AGCM is the atmospheric part of the
MIROC3.2 model (Hasumi and Emori 2004). Heat fluxes
in the slab ocean are first calculated via a ‘nudging’ run
in which sea surface temperatures are strongly nudged
to climatology, with the implied heat flux divergence
calculated and stored for later use, and then a simula-
tion is performed in which this previously computed
heat flux is applied, with ocean temperatures allowed to
evolve freely. The same heat flux divergence field is
used for the present-day, doubled carbon dioxide and
LGM integrations, and so these model runs all ignore
changes that could arise in ocean heat transport due to
circulation changes. We allowed 25 parameters (which
describe the major uncertainties in the model, especially
sub-grid-scale cloud parameterisations) to vary simulta-
neously, with prior estimates chosen to be as broad as
reasonable.

We chose 15 diverse data types which together
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describe the main features of the climate system, includ-
ing temperature, moisture/precipitation, radiation
balance and wind fields from the ERA-40 (Simmons and
Gibson 2000), CMAP (Xie and Arkin 1997) and ERBE
(Harrison et al. 1990) projects. All data consist of 2D
fields with near-complete global coverage, and DJF and
JJA seasons are considered separately, so our experi-
mental design has more in common with Murphy et al.
(2004) than Stainforth et al. (2005) who used annually
averaged data.

The discrepancy between climate models and data is
generally dominated by the model error, and therefore
the perfect model assumption is not tenable. That is, the
uncertainty of the observations is much smaller than
the uncertainty of the model error itself (where the
“model error” is defined as the difference between
reality, and the model evaluated at the “best” set of pa-
rameters for the problem in question) (Annan and
Hargreaves 2005). The theory and implications of these
issues are also explored in more detail in Kennedy and
O'Hagan (2001) and Rougier (2005). The practical effect
of accounting for model error is to increase the denomi-
nator of the cost function for model fitness, thereby
broadening the posterior distribution and increasing the
spread of the results compared to when a perfect model
assumption is made. The cost function under the perfect
model assumption can be written as

J= %(rn—o)%m*(m—o), ()

where m is the vector of model variables corresponding
to observations o, and R is the covariance matrix of ob-
servational errors. To account for model error, we use

7= %m—of(mm*(m—o), @

where T is the covariance matrix of the uncertainty in
model error. However, in the climate sciences, the mag-
nitude and form of model error is not well known, cer-
tainly at present, if not fundamentally so, and its
specification therefore relies on a substantially subjec-
tive judgement. We use our control run as a baseline
from which to estimate model error, while noting that
this is not an optimally tuned run but seems plausible
on all measures. Our basic assumption, made partly on
pragmatic grounds, is that the uncertainty in model error
for each data type can be assumed spatially and season-
ally invariant, and is proportional to the actual RMS
error of that data type in the control run, with the
constant of proportionality being a tunable factor. More
research is needed into the specification of the uncer-
tainty in model error, but we think that our assump-
tions are a reasonable starting point, and note that any
explicit consideration of this point represents an
advance over most previous work in which it has gener-
ally been ignored.

Estimates of model error for each of the 15 data
types were based on 20 years of a control run using pa-
rameters from the T42 version of this model (with the
exception of the highly resolution-dependent gravity
wave drag parameter, where a default T21 value was
used). Interannual variability of the model makes an in-
significant contribution to the model-data discrepancy.
For the central (‘medium’) estimate for model error, we
weighted each data type equally to contribute a total of
0.5 to the log-likelihood cost function (giving the control
run a cost of 7.5, and equivalent to assuming that the
uncertainty in RMS model error is equal to the RMS
error of the control run), and two more experiments
were performed with this uncertainty estimate scaled
by a factor of 2 in each direction. We also evaluated the
prior directly with another 40-member ensemble. The
costs (evaluating the original data constraint alone) for
the resulting ensemble members for the present day
simulations are shown in Table 1.

The ensemble size of 40 was chosen for computa-

Table 1. Statistics for the four ensembles: Tight, Medium and
Loose are the three tuned ensembles in order of increasing
assumed model error; Prior has parameters chosen from the
prior estimates. The cost is the sum of normalised RMS errors
of the model outputs compared to the present day data.
Uncertainties are all one standard deviation.

Climate Sensitivity =~ LGM Cooling
Costs (°C) °C
Tight 76+04 6.00+0.89 3.23+0.47
Medium 99+1.3 5.65+1.10 2.74+0.52
Loose 11.4+19 5.44+1.05 2.72+0.48
Prior 17.2+8.3 5.00+1.37 2.52+0.59

tional convenience. This is too small for accurate
sampling of the tails of the distributions, but the consis-
tent trends in the bulk statistics of costs and sensitivi-
ties appear reliable. The estimation was performed
using an iterative 4 year integration and analysis cycle.
After roughly 25 cycles all ensembles had converged to
statistically steady solutions in parameter space, and a
final 16 year nudging run was performed to generate
the ocean heat flux field for the present day, doubled
carbon dioxide and Last Glacial Maximum (LGM) simu-
lations. The present day simulations were integrated for
a further 16 years from the final analysis states to
generate mean climatologies, and had a typical drift of
around 0.1°C or less over this interval, thus justifying
the computational choices made. The doubled carbon
dioxide simulations were integrated for 40 years and ex-
ponential curves fitted to the time series, which had not
all fully converged. The LGM simulations were per-
formed under standard PMIP2 boundary conditions
(http://www-Isce.cea.fr/pmip2/), also for 40 years, by
which time the drift was negligible so a fit was not per-
formed and results were instead directly averaged over
the final 4 years. Although PMIP2 does not include slab
ocean models, our experimental approach is essentially
that of the original PMIP.

3. Results

The climate sensitivity results from our experiments
are shown in Table 1 and Fig. 1. Sampling directly from
the prior finds climate sensitivities of 3.7-6.5°C at the
90% confidence level, with one outlier from the 40-
member ensemble exhibiting a runaway greenhouse
(the exponential fit to 40 years gives the displayed
value of close to 12°C of warming, but this run was inte-
grated further and exceeded 16°C of warming after 60
years). As we tune the models more aggressively
towards the modern climate, the ensemble estimates for
climate sensitivity clearly increase. For our ensemble of
highest quality models, which have comparable skill to
the control run, more than half of the members have
sensitivity greater than 6°C. Although our ensembles
cover a substantial range of sensitivities, the median
values contrast strongly with the bulk of previous
work, which suggests a most likely value for climate
sensitivity of around or below 4°C (Andronova and
Schlesinger 2001; Knutti et al. 2002; Murphy et al. 2004).

In previous research, the value of the models and
methods in generating useful estimates of climate sensi-
tivity has generally been assumed and not directly
tested. Testing a model against independent data is
widely acknowledged to be a more stringent test of pre-
dictive skill than merely fitting a model to existing ob-
servations (Lipton 2005). To this end we have
performed LGM simulations to investigate how well our
ensembles can estimate a climate very different to the
modern state. There are no good estimates of globally
averaged temperature change for the LGM compared to
the present day, so we focus on the tropical oceans (30
°S to 30°N) where there is a concentration of proxy data.



SOLA, 2005, Vol. 1, 181-184, doi: 10.2151/sola. 2005-047 183

10| @

SJ_

0

0 2 4 6 8 10 12

15 T T T T T T
1ol (b) i
J _
0

0 2 4 6 8 10 12
15 T T T T T T
10| © E
| I . _
0

0 2 4 6 8 10 12
.
10 (d)

il

0

0 2 4 6 8 10 12

Climate Sensitivity (°C)

Fig. 1. Climate sensitivity distributions for four ensemble ex-
periments: (a) tight fit to observations (b) medium fit (c) loose
fit (d) sampled from prior parameter distributions with no
tuning. See Section 2 for details.

Even here, uncertainty remains. The CLIMAP (1981)
project produced a gridded SST data set which indi-
cated an average cooling of 0.8°C in the tropics, a value
which is now widely regarded as too small. The
alkenone data set of Harrison (2000) has been widely
used in recent years for comparison with models
(Houghton et al. 2001), and so we focus primarily on this
data set here. Averaging these data first by ocean basin,
and then forming an area-weighted global average in
the tropics, gives us an estimate of 1.8+0.2°C (at 1 sigma)
cooler than the present day. Given that the large Pacific
basin shows substantially less cooling (in both models
and data) than the Atlantic Ocean, this figure is not in-
consistent with the Atlantic average value of 3°C
cooling from the GLAMAP project (Schifer-Neth and
Paul 2003). More recently, Ballantyne et al. (2005) pre-
sented an estimate of 2.7+0.5°C cooling, and the poten-
tial impact of this substantially colder value is con-
sidered below.

As with the present-day simulations, the presence of
model error implies that we cannot expect our ensemble
members to simulate the LGM data to within its obser-
vational errors, and applying such a “perfect model”
constraint would result in an implausibly narrow poste-
rior ensemble. The accuracy of our temperature
estimate is limited by the representativity of the rather
sparse data set used, and correlations between the obser-
vations which have not been accounted for. Given un-
certainties in this estimate, the boundary conditions at
the LGM, and the influence of model error (especially,
but not solely, due to the use of modern heat fluxes), the
sample uncertainty only provides a lower bound on the
range of acceptable models. Therefore, we doubled and
redoubled the error estimate to 0.4°C and 0.8°C and tried
all three values in turn. Applying these constraints as a
posterior weighting is equivalent to repeating the
ensemble assimilation method with the extra data point
included in the set of observations.

As shown in Fig. 2, our LGM simulations are gener-
ally biased towards the upper end of the range of this
estimate of cooling and does not cover the full range of
uncertainty. Since there remains a substantial likeli-
hood that our ensembles have failed to simulate the
glacial state adequately we cannot justify a probabilis-
tic interpretation of our ensemble distributions for
climate sensitivity. For our three tuned ensembles (but
not the samples from the prior) there is a significant and
very similar correlation between the cooling of the LGM
tropical SST, and climate sensitivity, and this suggests
that our climate sensitivity estimates are generally also
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Fig. 2. Climate sensitivity versus Tropical SST temperature
change at the LGM. Cyan, blue and magenta dots indicate
loose, medium and tight ensembles respectively. Solid line indi-
cates least-squares fit, and dot-dashed lines show RMS scatter
of ensemble members about this line. The correlation is statisti-
cally significant at the 3 sigma level.
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Fig. 3. Cumulative distribution functions for meta-ensemble
with various constraints on LGM tropical SST.

too high. There is no guarantee that our modelled corre-
lation is correct, due to uncertainties in both the forcing
at the LGM and the model behaviour, and we would
welcome results using a range of different models.
However, a linear least-squares fit indicates that the
most likely tropical SST cooling of 1.8°C corresponds to
a climate sensitivity of around 4.5°C, with the scatter of
the ensemble around that value adding 0.8°C of uncer-
tainty at the 1 sigma level. This estimate is slightly
higher than, but broadly consistent with, most previous
research. Our conclusion is that this AGCM has a struc-
turally high sensitivity and that greater changes than
parameter estimation alone can provide would be
required to produce a version of the model that is both
realistic and has low climate sensitivity.

Since our ensembles have a considerable number of
samples at high sensitivity we now investigate whether
we can use the LGM data to constrain the upper end of
climate sensitivity. For this we combine the three tuned
experiments to form a single 120 member meta-
ensemble, and apply the LGM data constraints as a pos-
terior weighting factor. In Fig. 3 (blue lines) we see that
the high sensitivity ensemble members are substan-
tially down-weighted when the LGM constraint is used.
Sensitivities of greater than 6°C are effectively elimi-
nated unless we use the weakest of our three constraints
(which does not even rule out at the 1% level a modelled
LGM tropical ocean which is warmer than the present
day). Even in this case, there is very low likelihood for
sensitivity above 8°C. Although our biased ensemble
cannot directly give probabilistic estimates, we can see
that for the intermediate LGM constraint, only about 7%
of our ensemble are above 6°C sensitivity, and virtually
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nothing above 8°C. Due to the strong bias towards high
sensitivity in our ensembles, true climate sensitivity is
likely to be lower than these values would imply. The
impact of the colder temperature estimate of Ballantyne
et al. (2005) is indicated by the dashed red line. Even in
this case, our ensemble appears slightly too cold and the
more sensitive models are generally downweighted, but
the effect is less marked. Clearly, it is essential to estab-
lish robust estimates of the glacial state if approaches
such as this are to be useful in constraining climate sen-
sitivity.

4. Summary and discussions

Although it is difficult to place direct probabilistic
estimates on climate sensitivity, due to both the
presence of model error and the apparent bias of our
results towards high sensitivities, our results contrast
somewhat with the recent work of Stainforth et al.
(2005). They found a significant proportion of their
ensemble to have extremely high climate sensitivities of
around 10°C. However, for their observational con-
straint, they only used annually-averaged rather than
seasonally-differentiated data. Therefore, their con-
straint did not include any direct controls on the
behaviour of the model in response to changes in
radiative forcing. This may go some way towards ex-
plaining the differences between their results and those
presented by Murphy et al. (2004) who, while using the
same model, also used a constraint that includes
seasonal variation, and found a moderate upper bound
of 5.4°C at the 95% level.

Clearly, structural decisions (and to some extent also
our prior distributions for the parameters) have pushed
the MIROC3.2 model towards high sensitivities, even
while it retains a reasonable spatial and seasonal
pattern of behaviour. Our ensemble of climate sensitiv-
ity is substantially higher than that of Murphy et al.
(2004). They have not yet checked their results with any
out-of-sample data, but our LGM simulations suggest
that our ensembles are biased towards excessively high
sensitivity. Using the LGM as an additional constraint,
we find a most likely value for climate sensitivity of
around 4.5°C, although of course having used this LGM
data, we are left with no further independent data to
validate this estimate.

The substantial scatter in Fig. 2 implies that even if
the LGM state was much better characterised, it would
not be able to provide a very tight estimate of climate
sensitivity, due to uncertainties in the model response to
the different forcings. Our approach does, however,
demonstrate a method for validation of model-based es-
timates which necessarily have a substantial subjective
basis. Our model appears to have a strong structural
bias towards high sensitivity, but by using the LGM we
can discount the extreme end of our ensembles and
therefore anticipate that these results may prove to be
robust across different models. Any research which
focusses on a single model will run a risk of overestimat-
ing the confidence of the results, by underestimating
the extent of model error. We have taken some steps
towards addressing this problem, by using independent
data as validation. The main obstacle to improved esti-
mation appears to be the influence of model error, and
multi-model approaches may be very helpful in making
more progress in addressing this issue.
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