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Abstract Monte Carlo simulation is applied to compare the power of the statistical 
tests: the parametric t test, the non-parametric Mann-Kendall (MK), bootstrap-based 
slope (BS-slope), and bootstrap-based MK (BS-MK) tests to assess the significance of 
monotonic (linear and nonlinear) trends. Simulation results indicate that (a) the t test 
and the BS-slope test, which are slope-based tests, have the same power; (b) the MK 
and BS-based MK tests, which are rank-based tests, have the same power; (c) for 
normally-distributed data, the power of the slope-based tests is slightly higher than 
that of the rank-based tests; and (d) for non-normally distributed series such as time 
series with the Pearson type III (P3), Gumbel, extreme value type II (EV2), or Weibull 
distributions, the power of the rank-based tests is higher than that of the slope-based 
tests. The power of the tests is slightly sensitive to the shape of trend. Practical 
assessment of the significance of trends in the annual maximum daily flows of 30 
Canadian pristine river basins demonstrates a similar tendency to that obtained in the 
simulation studies. 
Key words trend detection; Student’s t test; Mann-Kendall test; bootstrap test; power of a test; 
P value; trend shape; statistical analysis 

Une comparaison de la puissance des tests t de Student, de Mann-
Kendall et du bootstrap pour la détection de tendance  
Résumé Des simulations de Monte Carlo ont été réalisées pour comparer la puissance 
des tests statistiques suivants pour estimer le niveau de signification de tendances 
monotones (linéaires et non-linéaires): le test paramétrique t de Student, le test non-
paramétrique de Mann-Kendall (MK), le test de pente par bootstrap (BS-pente) et le 
test MK par bootstrap (BS-MK). Les résultats de simulation indiquent que (a) les tests 
t de Student et BS-pente, basés sur la pente, ont la même puissance; (b) les tests MK et 
BS-MK, basés sur le rang, ont la même puissance; (c) pour des données présentant 
une distribution normale, la puissance des tests basés sur la pente est légèrement 
supérieure à celle des tests basés sur le rang; et (d) pour des séries présentant une 
distribution non-normale, comme une distribution de Pearson III, de Gumbel, de 
valeur extrême type II, ou de Weibull, la puissance des tests basés sur le rang est 
supérieure à celle des tests basés sur la pente. La puissance des tests est légèrement 
sensible à la forme de la tendance. L’estimation pratique de la signification des 
tendances est similaire pour les études par simulation et pour l’analyse des données de 
maxima annuels de débits journaliers de 30 bassins vierges canadiens. 
Mots clefs détection de tendance; test t de Student; test de Mann-Kendall; test 
bootstrap; puissance d’un test; valeur de P; forme de tendance; analyse statistique 

 
 
INTRODUCTION 
 
The rank-based nonparametric Mann-Kendall (MK) test (Mann, 1945; Kendall, 1975) 
has been commonly used to assess the significance of monotonic trends in hydro-
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meteorological time series (e.g. ven Belle & Hughes, 1984; Cailas et al., 1986; Hipel 
et al., 1988; Hipel & McLeod, 1994; Taylor & Loftis, 1989; Demarée & Nicolis, 1990; 
Zetterqvist, 1991; Chiew & McMahon, 1993; Yu et al., 1993; Hirsch et al., 1993; 
Lettenmaier et al., 1994; Burn, 1994; Yulianti & Burn, 1998; Gan, 1998; Lins & Slack, 
1999; Douglas et al., 2000; Pilon & Yue, 2002; Yue et al., 2003; and others). Another 
rank-based nonparametric test, the Spearman’s rho (SR) test (Lehmann, 1975; Sneyers, 
1990), has sometimes been applied to detect trends in hydrological data (e.g. 
Lettenmaier, 1976; El-Shaarawi et al., 1983; Pilon et al., 1985; McLeod et al., 1991; 
Hipel & McLeod, 1994). The study of Yue et al. (2002) documented that these two 
tests have almost the same power to identify trends in time series. In comparison to the 
parametric t test, the common use of the nonparametric tests is due mainly to the 
consideration that they are more suitable for the situations of non-normal data, 
censored data, and missing data problems, which frequently occur in hydro-
meteorological studies. 
 Recently, the attention given to the bootstrap technique has been attributed to the 
advances made in PC computational capability (see Efron & Tibshirani, 1993; Hjorth, 
1994; Davison & Hinkley, 1997). The bootstrap is a computationally intensive approach 
for assigning measures of accuracy to statistical estimates. The accuracy of statistical 
inference by the approach depends on the number of bootstrapped samples from original 
data. That is, as the number of “bootstrapped” samples increases, the accuracy of the 
statistical inference improves. Its merit is that it is free of the restrictive assumption 
regarding normality of sample data, and that the method is easy to understand and 
implement (Simon & Bruce, 1991). The bootstrap techniques have been applied to 
resolve various problems in the water resources field as demonstrated by Zucchini & 
Adamson (1989), Vogel & Shallcross (1996), Lall & Sharma (1996), Tasker & Dunne 
(1997), Stefano et al. (2000) and Yue & Wang (2002). The rank-based bootstrap MK 
test has also been used to detect trends in hydrological time series (e.g. Douglas et al., 
2000; Burn & Hag Elnur, 2002; Yue et al., 2003). In these trend-detection studies, 
sample data are re-sampled by randomly selecting samples from the original data, and 
then the MK test statistic of the re-sampled data is computed. By re-sampling the 
original data N times and computing the N MK statistics, the bootstrap empirical 
distribution function of the MK statistic can be obtained. This test is referred to as the 
bootstrap-based MK (BS-MK) test, to distinguish it from the original MK test. 
 Both the MK and BS-MK tests are used to assess the significance of trend via the 
MK statistic rather than to directly judge the significance of trend by its magnitude. 
The assessment of the significance of trend and the computation of the magnitude 
(slope) of trend are carried out separately. The magnitude of trend may be computed 
by ordinary least squares (Hirsch et al., 1993) or the nonparametric approach (Sen, 
1968). The classical Student’s t test evaluates the significance of trend via its 
magnitude, i.e. the t-test statistic is the ratio of the estimate of the magnitude of trend 
or its slope to its standard deviation. 
 Given that it is possible to compute the slope of each bootstrapped sample, these 
values can, in turn, be used to establish the empirical distribution of trend. This can be 
applied to assess the significance of a specific trend from a target. This study will also 
propose this approach for trend detection, which is termed the bootstrap-based slope 
(BS-slope) test. Both the BS-slope test and the BS-MK test are presented in the 
following sections.   
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 When one wants to perform trend detection, it is natural to ask which of these four 
tests should be applied to detect a trend in a time series. In other words, which test has 
the highest power to detect a certain amount of trend? Lettenmaier (1976) compared 
the power of the t test and the Spearman’s rho (SR) test for detecting a linear trend in 
normally distributed series and indicated that the t test has slightly higher power than 
the SR test. Hipel & McLeod (1994) investigated the powers of the MK test and the 
lag-one serial correlation test for detecting trends in normally-distributed data, and 
demonstrated that the MK test is more powerful than a lag-one serial correlation test 
for identifying deterministic trends. Yue et al. (2002) documented that the MK and SR 
tests have the same power and that their power is sensitive to the probability distribu-
tion type as well as the statistical properties of sample data. 
 The objective of this paper is to compare the power of the t test, MK test, BS-slope 
test and BS-MK test for detecting both linear and nonlinear monotonic trends in 
normal and non-normal series by Monte Carlo simulation. The four tests are also 
applied to assess the significance of trends in annual maximum flows of 30 near-
pristine river basins in Canada. 
 
 
METHODOLOGY 
 
For a description of the statistics of the parametric t test and the conventional MK test, 
readers may refer to Hirsch et al. (1993), or generally available texts on statistics. Only 
the bootstrap-related tests are introduced here. 
 
 
Bootstrap-based slope (BS-slope) test 
 
Suppose that an observed sample data set, X  (= x1, x2, ..., xn) is available, from which 
the magnitude of trend, bo, of interest can be computed using the approach by Theil 
(1950) and Sen (1968), hereafter referred to as the Theil-Sen Approach (TSA). 
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where xl is the lth value of the sample data X. 
 The significance of bo is assessed based on the null distribution of slope, which can 
be derived by randomly bootstrapping the sample data X. A bootstrapped sample, 
denoted by *X (= *

1x , *
2x , …, *

nx ), is obtained by randomly sampling n times with 
replacement and with an equal probability 1/n from the observed sample x1, x2, ..., xn. 
By bootstrapping X M times, M independent bootstrap samples X*1, X*2, X*3, ..., X*M, 
each with sample size n can be obtained. The slope ( *b̂ ) for each of the bootstrapped 
samples is then estimated using equation (1). This results in M estimates of the slope 

*b̂ : ,ˆ 1*b  ,ˆ 2*b  ,ˆ 3*b  ..., .ˆ*Mb  By arranging them in ascending order, the bootstrap 
empirical cumulative distribution (BECD~ *b̂ ) of the slope will be obtained, as 
illustrated in Fig. 1. The P value (pb) of the slope, bo, of the observed sample data can 
be estimated using the BECD~ *b̂  curve: 
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P-value (pb) 

BECD 

0.0                     b0                      *b̂    
Fig. 1 Schematic illustration for computing the BECD~ *b̂ . 
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where mb is the rank corresponding to the largest value *b̂  ≤ ob . For sample data 
having no trend, the P value should be close to 0.5. A plus or minus bo value indicates 
an upward or downward trend, respectively. At the significance level (α) of 0.05 for a 
one-tailed test, a negative trend is significant when its P value (pb) ≤ 0.05, and a 
positive trend is significant when pb ≥ 0.95. 
 
 
Bootstrap-based MK (BS-MK) test 
 
This test is similar in design to that of the BS-slope test. Rather than being based on 
the slope, the MK statistic (So) of the sample data, X, is computed and used. The 
significance of So can be assessed based on the null distribution of the bootstrap MK 
statistic, BECD~ *Ŝ , which is derived from the bootstrapped sample data. The P value 

(ps) of the So of observed sample data is estimated using the BECD~ *Ŝ  curve as: 

M
mSSp S

oS =≤= ]ˆ[Pr *  (3) 

where Sm  is the rank corresponding to the largest value *Ŝ  ≤ oS .  
 Similar to the BS-slope test, for the sample data without any trend, the P value 
should be close to 0.5. A plus or minus So corresponds to an upward or a downward 
trend, respectively. At α = 0.05 for a one-tailed test, for a significant negative trend,  
ps ≤ 0.05; for a significant positive trend, ps ≥ 0.95.  
 
 
Confidence interval of the bootstrap tests 
 
The percentile method is adopted to construct the bootstrap confidence interval (Efron 
& Tibshirani, 1993). For a two-tailed test, the percentile method is just the interval 
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between the 100·α/2 and 100·(1 – α/2) percentiles of the bootstrap distribution of C* 
(C*= S* or b*); α is pre-assigned significance level. The 100·α/2 percentile of the 
bootstrap distribution of C* is estimated by first arranging the C* in ascending order. 
Then the percentile is estimated by interpolating between the (α·M/2) and the  
(α·M/2 + 1) members of the ordered C*. If the number of the bootstrap samples, M, is 
large enough, an accurate confidence interval can be obtained by the percentile 
method. For 90–95% confidence intervals, Efron & Tibshirani (1993) and Davison & 
Hinkley (1997) suggest that M should be between 1000 and 2000. 
 
 
Power computation 
 
The significance level or type I error, α, is the probability of rejecting the null 
hypothesis when it is true. A type II error (β) is the probability of accepting a null 
hypothesis when it is false. The power of a test is the probability of correctly rejecting 
the null hypothesis when it is false, which is equal to 1 – β. When sampling from a 
population that represents the case where the null hypothesis is false, i.e. the alterna-
tive hypothesis is correct, the power can be estimated by (Yue et al., 2002): 

Power =
N

N rej  (4) 

where N is the total number of simulation experiments and Nrej is the number of 
experiments that fall in the critical region, which is either ≤ α/2 or ≥ 1 – α/2. 
 
 
COMPARISON OF THE POWER OF THE FOUR TESTS TO DETECT 
LINEAR TRENDS 
 
A linear trend is a special type of monotonic trend having a constant change rate, and it 
has been widely used to approximate the magnitude of trends in time series analysis. 
First, the power of these tests for the case of linear trend is investigated. Monte Carlo 
simulation is used to generate time series of sample size n for a given distribution type 
having pre-selected characteristics (i.e. coefficient of variation, Cv, and skewness). The 
effect of sample properties such as sample size, sample variation and sample skewness 
on the power of statistical tests have been observed by Yue et al. (2002). Only positive 
trends will be inspected here, as for negative trends the power of the tests is identical. 
In order to assess the ability of the tests to correctly reject the null hypothesis, a linear 
trend having a specific slope is superimposed onto the generated time series. 
 
 
Power of the tests for normally-distributed data 
 
Simulation was performed to generate 3000 iid (independent, identically distributed) 
normal time series having a sample size n = 50 with mean µ = 1.0 and coefficient of 
variation Cv = 0.5. Some selected linear trend scenarios (Tt = b⋅t, b = 0.00 (0.004) 0.02, 
i.e. with b ranging from 0.00 to 0.02 with an increment of 0.004) are superimposed 
onto each of the generated series. For example, for a time series with n = 50, µ = 1.0, 
and b = 0.01, its mean value would increase by 50% over a period of 50 years. For the 
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t test and the MK test, their statistics were computed from the simulated samples and 
the confidence intervals at α = 0.05 were established. The power of the tests was then 
computed using equation (4). 
 The power of the BS-slope test and BS-MK test was computed as follows. Each of 
the generated sample series, as described above, was resampled M (=3000) times, 
resulting in M bootstrap samples. For the BS-slope test, the P value (pb) for each of the 
generated 3000 sample series, with a given b, was estimated using equation (2). The 
percentile interval of pb at a significance level (α) of 0.05 was constructed using the 
percentile method on the basis of pb when b = 0. The power of the test for a given b ≠ 0 
was then computed using equation (4). For the BS-MK test, similar to the BS-slope 
test, the P value (pS) of S of each generated sample series with a given b was estimated 
using equation (3). The percentile interval of pS at α = 0.05 was constructed using the 
percentile method when b = 0. The power of the test for a given b ≠ 0 was then 
computed using equation (4). Figure 2 shows the powers of these tests. Results 
indicate that for normally-distributed time series: (a) the slope-based tests, namely the 
t test and the BS-slope test, have almost the same power to detect trends; (b) the rank-
based tests, namely the MK and the BS-MK tests, have almost the same power; (c) the 
power of the slope-based tests is slightly greater than that of the rank-based tests; and 
(d) when no trend is present, all of the tests have virtually the same power. The above 
simulation procedures were also replicated for sample sizes n = 30 and 80, and the 
results are the same as in the case of n = 50 (not shown here for the sake of brevity). 
 
 

 
Fig. 2 Power of the four tests for normal time series for slopes of 0, 0.004, 0.008, 
0.012, 0.016 and 0.020, with n = 50, Cv = 0.5. 

 
 
Power of the tests for the non-normal data 
 
In practice, most hydrometeorological time series may not follow the normal distribu-
tion. Distribution types that are frequently encountered in hydrometeorological time 
series are the Pearson type III (P3), extreme value (Gumbel, EV2 and Weibull) 
distributions. 
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 Given mean (µ) = 1.0 and Cv = 0.5, random variates with Gumbel distributions can be 
generated using the formulae in Stedinger et al. (1993). For the EV2 distribution, κ = −0.3; 
for the Weibull distribution, ω (omega) = 0.6; for the P3 distribution, the coefficient of 
skewness, γ = 1.5. For each selected distribution type, 3000 samples are generated having 
sample size n = 50. A linear trend scenario, Tt = b⋅t with b = 0.0 (0.004) 0.02 (t = 0, 1, 2, 
…, n – 1), was then superimposed onto each of the generated series. Figures 3–6 depict the 
power of the tests for the P3, Gumbel, EV2 and Weibull distributions, respectively. These 
diagrams indicate that for non-normally distributed series, the two slope-based tests have 
almost identical power with each other, and this is also the case for the rank-based tests. 
However, the power of the rank-based tests is consistently higher than that of the slope-
based tests when linear trend is present in time series. 
 
 

 
Fig. 3 Power of the four tests for P3-distributed series for slopes of 0, 0.004, 0.008, 
0.012, 0.016 and 0.020, with n = 50, Cv = 0.5 and γ = 1.5. 

 
 

 
Fig. 4 Power of the four tests for Gumbel-distributed series for slopes of 0, 0.004, 
0.008, 0.012, 0.016 and 0.020, with n = 50 and Cv = 0.5. 
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Fig. 5 Power of the four tests for EV2-distributed series for slopes of 0, 0.004, 0.008, 
0.012, 0.016 and 0.020, with n = 50, Cv = 0.5 and κ = –0.3. 

 
 

 
Fig. 6 Power of the four tests for Weibull-distributed series for slopes of 0, 0.004, 
0.008, 0.012, 0.016, and 0.020 with n = 50, Cv = 0.5 and ω = 0.6. 

 
 
 
COMPARISON OF THE POWER OF THE FOUR TESTS TO DETECT 
NONLINEAR MONOTONIC TRENDS 
 
In reality, a trend in nature might not be linear. To the authors’ knowledge, little 
attention has previously been paid to ascertaining the influence of the shape of trend on 
the power of a particular test. It would be useful to know the ability or power of these 
tests to reject the null hypothesis should a nonlinear monotonic trend exist in a time 
series. In this study, two types of typical nonlinear monotonic increasing trends 
(Ratkowsky, 1989) are selected to ascertain the power of the tests: 
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where f1(t) represents a change rate or slope with time t, which increases at the 
beginning and then starts to decrease after a certain turning point, i.e. the increasing 
pace of trend accelerates at the beginning and then decelerates; f2(t) is a change rate or 
slope with time t, which increases over the entire period of observation, i.e. the 
increasing pace of trend accelerates throughout the period; and B1 and B2 represent the 
magnitude of change over the entire period. The two types of trends with given 
parameters: T1 (a1= 0.1, c1 = 0.15, d1 = 0.2 and B1 = 0.2 (0.2) 1.0) and T2 (a2 = 0.025 
and B2 = 0.1 (0.1) 0.5) are illustrated in Fig. 7(a) and (b), respectively. 
 
 

 
Fig. 7 Monotonic trends: (a) T1; (b) T2. 

 
 
Normally-distributed series 
 
Similar to the case of linear trend, 3000 iid normally-distributed time series were 
generated having a sample size n = 50, µ = 1.0 and Cv = 0.5. The monotonic trend T1 = 
B1f1(t) with B1 = 0.2 (0.2) 1.0 was superimposed onto each of the generated series. The 
power of the four tests was then computed and is shown in Fig. 8. The results depicted 
in Fig. 8 are similar to the previous case of linear trend for normally-distributed data, 
i.e. the power of the slope-based test is slightly higher than that of the rank-based tests. 
For the form of the monotonic trend T2 = B2f2(t) with B2 = 0.1 (0.1) 0.6, the power of 
the tests was computed and it was similar to that for the T1 case. This result is 
somewhat in contrast to the commonly held view that the parametric t test is only 
suitable for assessing the significance of a linear trend. The results presented herein 
indicate that the power of the slope-based tests may be marginally affected by the 
shape of the monotonic trend (T1 vs T2) giving the same amount of increase in trend 
over time, in comparison to the linear trend that is a special case of monotonic trend. 
Based on the above simulation results, the overall power of a test appears to be more  
 

(a) (b) 
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Fig. 8 The same as Fig. 2 but for monotonic trend T1 with magnitude of changes of 
0.2, 0.4, 0.6, 0.8 and 1.0 over time.  

 
 
influenced by the magnitude of change that occurs over an observational period than 
by the shape of the monotonic trend. 
 
 
Non-normally distributed series 
 
Similar to the linear trend case, the monotonic trend T1 = B1f1(t) or T2 = B2f2(t) was 
superimposed onto the generated series. Subsequently, the power for the four tests for 
the P3, Gumbel, EV2 and Weibull series was computed, which indicates the same 
tendency as for linear trend (see Figs 3–6). For the sake of conciseness, only the power 
of the tests with the trend T1 for the P3-distributed series is illustrated in Fig. 9. The 
same conclusion as for linear trend can be drawn, i.e. for non-normally distributed 
data, the power of the rank-based tests is greater than that of the slope-based tests. 
 
 

 
Fig. 9 The same as Fig. 3 but for monotonic trend T1 with magnitude of changes of 
0.2, 0.4, 0.6, 0.8 and 1.0 over time. 
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 From the above simulation experiments, it was found that the slope-based tests, 
namely the t test and the BS-slope test, have the same power to detect the significance 
of a trend, irrespective of whether a trend is monotonically linear or nonlinear. 
Similarly, the rank-based tests, namely the MK and the BS-MK tests, have almost 
identical power. For normally-distributed series, no matter whether a trend is linear or 
nonlinear, the power of the slope-based tests for detecting the trend is slightly higher 
than that of the rank-based tests. Finally, for non-normally distributed data, such as the 
P3, Gumbel, EV2 and Weibull distributions, the rank-based tests have visibly higher 
power than that of the slope-based tests for detecting the significance of a trend, 
irrespective of whether a trend is linear or nonlinear. This implies that the existence of 
trend in non-normally distributed time series can be more effectively identified by the 
rank-based tests than by the slope-based tests. 
 
 
The impacts of the shape of trend on the power of the tests 
 
In the previous sections, the power of the tests was investigated for detecting the three 
types of trend, i.e. linear trend T and nonlinear trends T1 and T2. It is useful to know if 
the shape of the trend affects the power of the tests. To observe this issue, the same 
magnitude of change is given for the three types of trend, i.e. the mean (1.0) increases 
by 0.5 over 50 years, as shown in Fig. 10. The same parameters and procedures as used 
before are applied to generate time series with different distribution types. Only the  
t test and the MK test are inspected here as the BS-slope test and the BS-MK test 
would have provided similar results. The results for the t-test and the MK test are 
presented in Figs 11 and 12, respectively. These diagrams demonstrate that the ability 
to detect trend is somewhat sensitive to the shape of the trend with upward convex 
shape having the highest power and upward concave shape having the lowest power, 
except for the Weibull-distributed data. However, the impact of the shape of the trend 
has relatively little effect on the overall power of the tests for the case studied. This 
result, along with the observations obtained in the former section, further confirms the  
 
 

 
Fig. 10 Illustration of three types of trend. 
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Fig. 11 Comparison of the power of the t test for series with different distributions. 

 
 

 
Fig. 12 Comparison of the power of the MK test for series with different distributions. 

 
 
inference that the power of the tests is only slightly affected by the shape of trend. In 
addition, in comparison to the shape of trend, the power of a statistical test is much 
more sensitive to the probability distribution of the sample data. In addition, the MK or 
rank-based tests prove to be more powerful than the t test or slope-based test for non-
normal data. 
 
 
CASE STUDY 
 
Annual maximum daily streamflow of 30 drainage basins representing pristine or 
stable land-use conditions were selected from the Canadian Reference Hydrometric 
Basin Network (RHBN) (Environment Canada, 1999). These sites were chosen as their 
data visually displayed evidence of trend and were useful for demonstrating the  
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practical utility of the results from the above simulation study. Table 1 presents the 
identifier (ID) of gauging stations in these basins, the record lengths and the statistics 
(mean, coefficient of variation (Cv), coefficient of skewness (Cs) and coefficient of 
kurtosis (Ck)) of annual maximum daily flows. The magnitude of trends in these series, 
estimated using equation (1) are also listed in Table 1. Figure 13 plots flow series, their 
means, 5-year moving average series and linear trends. These diagrams only intend to 
visualize the data and to qualitatively assess the possible existence and type of trend. It 
is evident that monotonic trends, which are either linear or nonlinear, may exist within 
these series. 
 
 

 
Fig. 13 Visualization of annual maximum daily streamflow series of 30 Canadian 
pristine river basins. 
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 To assess the statistical significance of the trends in these series, the P values for 
the t test, BS-slope test, MK test and BS-MK test were computed. For positive trends, 
their P value (p) should be ≥0.50. To be consistent in assessing the significance of 
positive and negative trends at a given significance level, their P value is taken as: 

�
�
�

−
=′

trendpositiveafor1
trendnegativeafor

p
p

p  (6) 

where the probability value p is as given by equations (2) and (3) for the BS-slope test 
and BS-MK tests. The P values of these series are presented in the last four columns of 
Table 1. At a given significance level, the smaller the P value, the more significant is 
the trend. In Table 1, italic bold numbers indicate that the trends are statistically 
significant at α = 0.10 and shaded bold numbers show that the trends are statistically 
significant at both α = 0.10 and 0.05. By comparing the P values among these tests, it 
can be seen that for the data having smaller coefficient of skewness, say Cs ≤ 0.3, i.e. 
where the data tend to be nearly symmetrically or normally distributed, the slope-based 
tests have an increased chance to assess the significance of trends than the rank-based 
tests, although the difference between them is minor. However, for the series with 
higher skewness, i.e. when the distribution type is skewed, the rank-based tests are 
more likely to detect trends. These results are consistent with those obtained from the 
previous simulation studies. 
 
 
CONCLUSIONS 
 

In this study, Monte Carlo simulation was applied to assess the power of the 
parametric t test, non-parametric Mann-Kendall (MK), bootstrap-based slope (BS-
slope) and bootstrap-based MK (BS-MK) tests to detect monotonic (linear and 
nonlinear) trends in both normal and non-normal time series. Simulation results 
indicate that: (a) the t test and the BS-slope test, which are slope-based tests, have the 
same power; (b) the MK and BS-based MK tests, which are rank-based tests, have the 
same power; (c) for normally-distributed data, the power of the slope-based tests is 
higher than that of the rank-based tests, but the difference is not great; and (d) for non-
normally distributed series, such as time series with the P3, Gumbel, EV2 and Weibull 
distributions, the power of the rank-based tests is much higher than that of the slope-
based tests. The power of the tests is slightly sensitive to the shape of trend, with 
upward convex shape having the highest power and upward concave shape having the 
lowest power except for Weibull distributed data. However, in comparison to the 
impact of the distribution type on the power of the tests, the influence of the shape of 
trend on the power of the tests is marginal. The assessment of the significance of 
trends in the annual maximum daily flows of 30 Canadian pristine river basins shows 
similar results to those obtained in the simulation studies. 
 The study provides an initial basis for practitioners to select a suitable statistical 
test based on the sample statistical properties of time series. For approximately 
normally-distributed series, the slope-based tests should be used to assess the sig-
nificance of trends, but the rank-based tests can also be applied as the power difference 
between these two kinds of tests is not great. For non-normal series, the rank-based 
tests should be employed for trend detection due to their increased ability to detect 
trends in comparison to the slope-based tests. 
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