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ABSTRACT

Regional climate trends are of interest both for understanding natural climate processes and as tests of
anthropogenic climate change signatures. Relative to global trends, however, their detection is hampered by
smaller datasets and the influence of regional climate processes such as the Southern Oscillation. Regional trends
are often presented by authors without demonstration of statistical significance. In this paper, regional-average
annual series of air temperature and sea surface temperature for the New Zealand region are analyzed using a
systematic statistical approach that selects the optimum statistical model (with respect to serial correlation,
linearity, etc.), explicitly models the interannual variability associated with observable regional climate processes,
and tests significance. It is found that the residuals are stationary and are a red noise process [ARMA(1,0)] for
all the series examined. The SOI and a meridional circulation anomaly index (both high-pass filtered) are
‘‘explanatory variables’’ for interannual variability. For national-average air temperature (AT), linear and ex-
ponential trend models are equally valid but for simplicity the linear model is preferred. Failure to model the
serial correlation in AT would result in an estimated confidence interval for trend that is too small by 36%. The
use of the explanatory variables tightens the confidence interval by 15%.

Significant trends were detected. The trend in AT for 1896–1994 is 0.11 6 0.0358C decade21 (95% confidence
interval). This is about double the trend reported for global data, which may be due to the relative absence of
sulfate aerosols in the South Pacific region. The trends in maximum and minimum temperature over this period
are not statistically different. However, for the later period of 1951–90, the trend in maximum temperature
reduces to an insignificant value, while the trend in minimum temperature remains high, resulting in a significant
downward trend in diurnal range of 0.108C decade21. Similar diurnal range behavior in other regions has been
tentatively attributed to increasing cloudiness. The trend in a regional SST series for 1928–94, 0.078C decade21,
is about half the trend in AT for the same period. The trend in the difference, SST–AT, 20.068C decade21, is
statistically significant. This implies the existence of an atmospheric warming source for the additional air
temperature trend, and may mean that the heat fluxes between the atmosphere and ocean in the New Zealand
region are subject to a large trend, with the direction of flux change being toward the ocean. The results of the
study are consistent with the IPCC predictions of climate change.

1. Introduction

The detection of climate change, including those pre-
dicted to occur from rising concentrations of atmo-
spheric greenhouse gases (Wigley and Barnett 1990;
Gates et al. 1992), may be sought in the historical cli-
mate record of the last 100–150 yr. To date, global-
average temperature series show increasing trends, with
highest annual mean temperatures mostly in the last
decade, but at this stage the trends cannot be ascribed
directly to greenhouse gas increases (Folland et al. 1990;
Folland et al. 1992). Among other reasons, the global
series exhibit significant variation on annual to decadal
scales, the sources of which are not understood, though
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much of it may be due to forcing by tropical ocean
temperature variation (Graham 1995).

Temperature trends are expected to vary systemati-
cally between regions, in response to global greenhouse
gas increases, industrial sulfate aerosol emissions in
Northern Hemisphere continental regions (Isaksen et al.
1992; Taylor and Penner 1994; Jones et al. 1994), and
cloudiness changes (Karl et al. 1993). The regional scale
is of particular interest to nations and economic groups
and often has the homogeneous historical datasets need-
ed for climate change research. Regional variations in
temperature trend are widely evident in data (Folland
et al. 1990, 1992; Parker et al. 1994; Salinger et al.
1995) and can provide a basis for testing trend signatures
predicted by climate models.

Trend detection at the regional scale is complicated,
however, by the relatively greater variation associated
with natural climatic processes, such as the El Niño–
Southern Oscillation (ENSO) phenomenon (Jones 1989;
Salinger et al. 1995; Basher and Thompson 1996). This,
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FIG. 1. Regional map showing location of the stations used to
compute the SOI and circulation indices and the area used to compute
regional mean SST.

FIG. 2. Annual mean series of New Zealand daily mean temperature
(AT), daily maximum temperature (MAXT), and daily minimum tem-
perature (MINT), diurnal temperature range (DTR), and regional
mean sea surface temperature (SST).

together with the smaller datasets, limits the statistical
significance of regional trend estimates relative to those
for global trend estimates. It is not uncommon for both
global and regional temperature trends to be estimated
from a comparison of the averages for the decades at
either end of the record (Folland et al. 1992; Salinger
et al. 1993; Parker et al. 1994) or to be taken as self-
evident from the generally rising pattern evident in
plots. One of the aims of this paper is to assemble a
systematic statistical approach to trend estimation that
includes significance testing and enables better detect-
ability in regional series.

In most previous statistical modeling studies, it is
generally assumed that the annual mean temperature
time series is made up of a long-term trend component
and a residual component that is often assumed to be
white noise (Wigley and Jones 1981; Jones 1989). If
the residuals are serially correlated, this will result in
the overestimation of the effective sample size of the
residuals (Leith 1973; Trenberth 1984), and hence over-
estimation of the significance of a trend. Recently, some
advanced studies (Bloomfield 1992; Bloomfield and
Nychka 1992; Woodward and Gray 1993) have intro-
duced regression models with stationary and serially
correlated residuals to address the problem. Continuing
this approach, we set out procedures for selecting the
optimum residual model for the dataset under consid-
eration. We consider linear and nonlinear trends.

The fundamental statistical models we use are re-
gressions with serial correlation (Kohn and Ansley
1985; Bloomfield 1992; Bloomfield and Nychka 1992;
Woodward and Gray 1993). These models are not as
popular as least squares regression models, perhaps be-
cause the corresponding statistical inferences and com-
putational routines are not well known. For this reason,
we briefly introduce the statistical inferences of the
model and point to suitable computational programs
available in the advanced statistical package S-PLUS
(Chambers and Hastie 1992; StatSci 1993). A set of

steps is provided to lead the reader through the required
procedures.

As already noted, some of the interannual variability
at the regional scale is known to be related to readily
observed factors, such as the Southern Oscillation or re-
gional circulation anomalies. In principle, if these factors
are unrelated to long-term change and forcing factors,
and are themselves free of measurement error, they can
be modeled to reduce the variability of the series. Sta-
tistically, this would increase the ratio of variation of
trend to variation of residuals and improve the confidence
interval of the trend estimate. In fact, since the Southern
Oscillation and circulation anomalies cannot be assumed
to be free of long-term trend or measurement error, it is
necessary to apply a high-pass filter to their series before
developing the model, in order to avoid imposing erro-
neous trend on the series being studied (the implications
of filtering will be further discussed in section 2). Jones
(1989) applied this idea by removing the influence of a
filtered series of the Southern Oscillation index (SOI) on
his global temperature series, before undertaking trend
analysis. To identify the role of external influences on
temperature trends, Richards (1993) and Visser and Mo-
lenaar (1995) directly included in their models unfiltered
explanatory variables, such as enhanced CO2, tropospheric
sulphate pollution, and stratospheric volcanic aerosol.

The geographical focus of this paper is the New Zea-
land region (Fig. 1). Annual mean series of national-
composite daily surface air temperature (mean, maxi-
mum, minimum, and diurnal range), and regional-mean
sea surface temperature (Fig. 2) are analyzed. Statisti-
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cally significant trends are identified and are interpreted
in the light of global climate change science. The South
Pacific region is one of the few areas of the vast oceanic
areas of the Southern Hemisphere for which there are
adequate datasets. Urbanization is relatively limited, and
the region is relatively free of air pollution, being remote
from the dominant sources of anthropogenic sulphate
aerosols and having very little local industrial pollution.
Some aspects of global climate change might therefore
be more readily evident in these datasets. Recent studies
have established the general patterns of trend for New
Zealand and the South Pacific (Salinger et al. 1993;
Salinger 1995; Salinger et al. 1995; Folland and Salinger
1995). An important feature of the region is the strong
relationship of temperatures at monthly and interannual
timescales with the Southern Oscillation and associated
regional circulation anomalies (Trenberth 1976; Gordon
1986; Basher and Thompson 1996).

2. Statistical models

The fundamental statistical model used in this study is

y 5 m 1 f (l , . . . , l ) 1 b x 1 . . . 1 b x 1 e ,t t 1 r 1 1,t k k,t t

t 5 1, . . . , T, (1)

where {yt} are annual means of temperature; index t
runs over T yr; m is the temperature normal over these
years, ft;(ll, . . . , lr) is a function of t with parameters,
{ll, . . . , lr} representing the trend to be detected, r is
the number of parameters; {xi,t, t 5 1, . . . , T} is the ith
explanatory variable, which is observable and noncol-
inear with ft; k is the number of explanatory variables,
bi is the coefficient for the ith explanatory variable, and
{et} is the residual time series, which is an autoregres-
sive-moving average process of order (p, q) [ARMA(p,
q), Box and Jenkins (1976)]; that is,

e 2 f e 2 . . . 2 f et 1 t21 p t2p

5 h 1 u h 1 . . . 1 u h , (2)t 1 t21 q t2q

where p and q are nonnegative integers, {fl, . . . , fp}
are the autoregressive coefficients, {u1, . . . , uq} are the
moving average coefficients, and {ht} is a white noise
process with variance s2 (the innovation variance).

a. Trend term

The trend ft can be in a very general form (Bloomfield
1992). In the case of trends related to enhanced green-
house gas forcing, the representations that are of most
interest are linear trend

f (l ) 5 l t (3)t 1 1

and exponential trend

f (l ,l ) 5 l exp{l t}. (4)t 1 2 1 2

For diurnal temperature range, we find the piece-wise
two-section linear trend is of interest:

f (l ,l ) 5 l t when t , t ;t 1 2 1 0

5 (l 2 l )t 1 l t when t $ t , (5)1 2 0 2 0

where t0 is the turning point.

b. Explanatory variables

If there is a significant response of the regional tem-
perature {yt} to interannual regional circulation anom-
alies and this response is not modeled, the ratio of trend
signal to noise is reduced and a real trend, if present,
may be not detectable. However, where the circulation
influence can be represented by a linear response to
some measurable explanatory variable (e.g., the SOI),
it is possible to include the variable in the model to
reduce the noise level and thus improve the quality of
the estimated trend. All such explanatory variable series
must be subjected to high-pass filtering prior to doing
the regression model development and analysis, to en-
sure the estimated trend is uniquely represented by ft

without influence from low-frequency variability (or
systematic error) in the explanatory variables. A filter
cutoff at about 10 yr is suitable to distinguish between
the long-term variability of {yt}, which is relevant to
detecting the effect of enhanced greenhouse warming
and sulfate aerosol cooling (Wigley and Raper 1990),
and the shorter-term variability associated with the
Southern Oscillation and related circulation anomalies.
Filtering does not allow any estimate of how ft depends
on the explanatory variables, but this is not a problem
for us as our aim is to determine a statistically significant
trend estimate for the unfiltered measured temperature
series.

c. Residuals

Residuals characterize the variability not explained
by the trend and the explanatory variables. To ensure
that the trend is represented only by ft, it is important
to confine the residuals to be a stationary process, be-
cause nonstationary processes, such as the autoregres-
sive-integrated-moving average process [ARIMA(p,d,q),
d 5 1, 2, . . . , that is, the d-order difference series of
{yt} being an ARMA(p,q) process (Box and Jenkins
1976)], may include random trends (Woodward and
Gray 1993). ARMA(p,q) processes are stationary, short-
range correlated normal processes. White noise resid-
uals [ARMA(0,0); e.g., Jones 1989] and red noise re-
siduals [ARMA(1,0), Wigley and Raper 1990] are the
most commonly used, though Bloomfield (1992) dem-
onstrated that p . 1 is more appropriate for the residuals
{et} of the IPCC and Hansen–Lebedeff global temper-
ature series. Bloomfield also showed that an alternative
candidate is the stationary, autoregressive, fractionally
integrated moving average process [ARIMA(p,d,q),
Grainger 1980]; that is,
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` d
i(21) (e 2 f e 2 . . . 2 f e )O t2i 1 t212i p t2p2i1 2ii50

5 h 1 u h 1 . . . 1 u h , (6)t 1 t21 q t2q

where 0 , d , 0.5 is the differencing parameter and
the other symbols are as defined in (2), but no statistical
test is available to compare the relative quality of the
ARIMA(p,d,q) and ARMA(p,q) options. At the regional
scale, the greater annual variability in temperature series
means that long-range correlation will be less evident
and hence that the residuals can be satisfactorily char-
acterized by an ARMA(p,q) process with small p,q.

Visser and Molenaar (1995) further decomposed the
residuals into an ARMA process {et} and an indepen-
dent white noise process {jt}, but the meaning of {jt}
is not well explained. In fact {jt} mainly represents the
climate noise generated by daily weather variability [see
Leith (1973) for a more general discussion] and the
variance of {jt} can be estimated from the daily obser-
vations (Zheng 1996). When monthly averages or sea-
sonal averages of daily temperature are considered, {jt}
is often significant and cannot be omitted, but for annual
averages of daily temperature the magnitude of {jt} is
relatively small. Furthermore, the climate noise will be
correlated with regional circulation anomalies and will
be partially explained by the fitted explanatory vari-
ables. For these reasons, {jt} is omitted in this paper.

3. Fitting procedure

In this section, we describe how to fit the basic sta-
tistical model to observations, with reference to the sta-
tistical software package S-PLUS (StatSci 1993).

a. Remove low-frequency variability from candidate
explanatory variable series

Filter the candidate explanatory variable series, for
example, by S-PLUS routine ‘‘filter,’’ where the 13-term
high-pass Gaussian filter (with a 50% response at 10
years) is constructed by S-PLUS routine ‘‘demod.’’

b. Identify order (p,q) for residuals {et}

Keep all candidate explanatory variables in model (1).
For an integer m ($p), define the Akaike Information
Criterion (AIC, Akaike 1977) for (1) as

AIC(y , . . . , y z y , . . . , y )m11 T 1 m

5 22 ln max{L(e , . . . , e z e , . . . , e )}m11 T 1 m

1 2(1 1 r 1 k 1 p 1 q), (7)

where {et} is a realization of an ARMA(p,q) process;
L(em11, . . . , et z e1, . . . , em) is the conditional likelihood
of em11, . . . , et given e1, . . . , em and is a function of m;
l1, . . . , lr; f1, . . . , fp and u1, . . . , uq [for the detailed
form of L, see StatSci (1993), Eq. (16.46)]; and the

maximum is taken over all the parameters. The order
(p,q), which corresponds to the lowest AIC, is the order
to be selected.

We set m 5 10 as the initial value. In our experience,
this is suitable for most annual means of temperature,
even for global series. However, if the model obtained
from the initial trial has high autoregressive order, that
is, p close to 10, then m would need to be increased to
obtain the optimal model. The S-PLUS routine ‘‘ari-
ma.mle’’ is used to calculate the AIC. For a given p,
‘‘arima.mle’’ calculates AIC(yp11, . . . , yt z y1, . . . , yp),
which means that the first m–p observations have to be
removed in order to get AIC(ym11,..,yt z y1, . . . , ym). It
should be noted that ‘‘arima.mle’’ is applicable only to
linear ft with ARMA(p,q) residuals. However, if ft is
nonlinear, the AIC can be estimated by the following
two steps. First, fix l1, . . . , lr, consider the statistical
model

y 2 f (l , . . . , l ) 5 m 1 b x 1 . . . 1 b x 1 et t 1 r 1 1,t k k,t t

(8)

and estimate its AIC [denoted as AIC(l1, . . . , lr)] using
‘‘arima.mle.’’ Second, calculate the AIC for model (1)
by minimizing AIC(l1, . . . , lr) over all l1, . . . , lr us-
ing S-PLUS routine ‘‘nlminb.’’

The selected (p, q) can be further judged by checking
the autocorrelation function, the partial autocorrelation
function (Milionis and Davies 1994), and the smoothed
periodograms of the residuals (Bloomfield and Nychka
1992) using S-PLUS routines ‘‘arima.diag’’ and
‘‘spec.pgram.’’

c. Select explanatory variables

Fix the order (p,q) identified in section b. The ex-
planatory variables that correspond to the lowest AIC
are selected and are denoted as {x1,t, . . . , xk9,t}, where
k9 # k2. Then the statistical model is identified as

y 5 m 1 f (l , . . . , l ) 1 b x 1 . . . 1 b x 1 e ,t t 1 r 1 1,t k9 k9,t t

(9)

where {et} is an ARMA(p,q) process. All the parameters
can be estimated by ‘‘arima.mle.’’

d. Test the significance of the trend

Suppose Ln(m; b1, . . . , bk9; f1, . . . , fp; u1, . . . , uq)
is the likelihood function for the model

yt 5 m 1 b1x1,t 1 . . . 1 bk9xk9,t 1 et, (10)

and La(m; l1, . . . , lr; b1, . . . , bk9; f1, . . . , fp; u1, . . . ,
uq) is the likelihood function for the model (9). Then
the Neyman–Pearson statistic (Rao 1973) is defined as

RP 5 22 ln[max(Ln)/max(La)]. (11)

Under the null assumption ft 5 0, RP is distributed
asymptotically as a chi-square distribution with r de-
grees of freedom [x2(r)]. If the estimated RP is greater
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than the 100-a percentile of x2(r), the trend ft is sig-
nificant at the a percent level.

e. Calculate confidence intervals for the linear trend

Consider the linear trend model

y 5 m 1 l t 1 b x 1 . . . 1 b x 1 e , (12)t 1 1 1,t k9 k9,t t

where {et} is an ARMA(p,q) process. Let { , 1,ˆ ˆm l
1, . . . , k9; 1, . . . , p; 1, . . . , q} be the estimatedˆ ˆ ˆ ˆ ˆ ˆb b f f u u

parameters. Then the covariance matrix of { , 1,ˆ ˆm l
1, . . . , k9} can be estimated asˆ ˆb b

2 21 21Ŝ 5 (X9(ŝ V) X) (13)

(Jones 1992), where V, the autocovariance matrix of
{et}, can be estimated by solving Yule–Walker equations
(Box and Jenkins 1976) with coefficients { 1, . . . , p;ˆ ˆf f

1, . . . , q} and X is a T 3 (k9 1 2) matrix whose (t,ˆ ˆu u
i)th entry is xi,t if i # k9, or 1 if i 5 k9 1 1 or t if i 5
k9 1 2. Inverse matrices can be calculated by Choleski
decomposition using the S-PLUS routine ‘‘chol.’’

The 100-a percent confidence interval for l1 can be
constructed as 16 k912ta/2(T), where ta/2(T) is the 100-l̂ ŝ
a/2 percentile of the t distribution with t degrees of
freedom and k912 is the square root of the (k912)thŝ
diagonal element of S.

4. Data

a. Temperature series for trend detection

1) NEW ZEALAND AIR TEMPERATURES

Composite New Zealand annual mean series (AT,
MAXT, and MINT) of daily mean, daily maximum, and
daily minimum temperature, respectively, were formed
from a nationally representative set of seven long-term
measurement sites. The stations and their starting years
(Salinger 1981; Folland and Salinger 1995) are Auck-
land, 1855; Masterton, 1908; Wellington, 1863; Nelson,
1863; Hokitika, 1863; Lincoln, 1864; and Dunedin,
1853. Records were not taken between 1881 and 1893
at Hokitika or between 1881 and 1905 at Nelson. The
annual mean series were formed by unweighted com-
bination of the individual series’ anomalies relative to
their 1951–80 normals, added to the average of these
normals. Considerable work has been done to assess the
quality of New Zealand data and correct for site changes
and other problems (Rhoades and Salinger 1993; Sal-
inger et al. 1993). Stevenson screens were introduced
from around 1869, and urbanization effects over the
course of the twentieth century on the national com-
posite series are likely to be very small (Hessell 1979;
Folland and Salinger 1995). New Zealand’s size and
unique position within the midlatitude oceanic westerly
wind belt ensures a well-ventilated windy regime lead-
ing to negligible differences between rural and urban
temperatures. Studies elsewhere (Jones et al. 1989) in-
dicate that urbanization accounts for only a very small

proportion of the observed warming trends in Northern
Hemispheric temperature averages. An annual mean se-
ries of diurnal temperature range (DTR) was formed by
the difference between MAXT and MINT (Fig. 2).

The incompleteness of the composite temperature se-
ries before 1908 is not believed to be a problem for the
analysis of trend in AT, MAXT, and MINT, since the
contributing station series are each normalized to their
1951–80 normals, the spatial correlation in New Zea-
land temperatures is high, and the remaining stations
retain a representative distribution. The pattern of vari-
ation for AT, MAXT, and MINT appears to be stable
throughout the period. However, the individual station
DTR series are not normalized and therefore the com-
posite DTR series will exhibit shifts in mean when a
station is added or removed. In particular, the addition
of Nelson in 1905 and Masterton in 1908 will raise the
composite mean DTR, since both have relatively high
DTR. A sample calculation on the 1950–89 period
showed that this effect amounts to about 0.78C. For this
reason the DTR trend analysis is confined to the ho-
mogeneous period from 1909 onward. The substantial
reduction in all the temperature series in the early 1990s
is associated with the 1991 Mt. Pinatubo eruption and
the prolonged 1991–94 El Niño–Southern Oscillation
episode (Folland and Salinger 1995; Basher and Thomp-
son 1996).

2) SEA SURFACE TEMPERATURES

Following Basher and Thompson (1996), an annual
series of regional mean SST anomalies was formed for
the area 308–508S and 1608E to 1758W (Fig. 1) based
on the 58 lat 3 58 long data in the United Kingdom
Meteorological Office ATLAS7 global dataset. Detailed
discussions of the SST data resources and their accuracy
have been given by Folland et al. (1992) and Parker et
al. (1994) for the global database and by Folland and
Salinger (1995) for the New Zealand region. Systematic
errors of the order of 0.18–0.28C may affect the data
and likewise any trends estimated from them.

b. Explanatory variable series

1) SOUTHERN OSCILLATION INDEX

The SOI is taken as the mean sea level pressure dif-
ference between Tahiti and Darwin normalized to unit
standard deviation (Troup 1988). Annual averages of
monthly values of the SOI using a 40-yr normal base
of 1941–80 were computed and are shown in Fig. 3 for
the period 1860–1994. The trend analysis used a filtered
version, soi, which is essentially free of low-frequency
($10 yr periods) variations.

2) CIRCULATION INDICES

Trenberth’s (1976) indices of circulation anomalies
are based on station mean sea level pressure (MSLP).
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FIG. 3. Annual series for explanatory variables of Southern Os-
cillation index (SOI), meridional wind anomaly index (M1), and zonal
wind anomaly index (Z1).

TABLE 1. Identification of the optimum set of trend, explanatory variables and residual models for the New Zealand mean annual temperature
series AT (1896–1994) using the ARMA (p,q) model, with corresponding estimates of the mean and standard deviation of the linear trend
coefficient. The asterisk marks the preferred model.

Model

Trend and
explanatory

variables p, q d.f. 22ln(ML) AIC

Trend
coefficient

8C decade21

std dev of trend
coefficient

8C decade21

1 t, soi, zl, ml 0, 0 5 55.2 65.2 0.1092 0.0111
2 t, soi, zl, ml 1, 0 6 32.7 44.7 0.1105 0.0174
3 , soi, zl, ml 1, 0 5 49.6 59.6 — —
4 t, soi, zl, 1, 0 5 56.3 66.3 0.1114 0.0170
5 t, , zl, ml 1, 0 5 39.1 49.1 0.1086 0.0187
6* t, soi, , ml 1, 0 5 34.2 44.2 0.1101 0.0175
7 t, 1, 0 3 91.9 97.9 0.1115 0.0207
8 t, 0, 0 2 109.0 113.0 0.1114 0.0145
9 , soi, , ml 1, 0 4 50.9 58.9 — —

An index for a pair of stations is simply the monthly
average MSLP difference between the stations, minus
the long-term mean of this difference calculated over a
normal period, usually 1951–80. A nonzero index im-
plies an anomalous geostrophic wind normal to the pres-
sure gradient anomaly. To represent the broad circula-
tion anomaly patterns, we have chosen two approxi-
mately orthogonal indices, namely Z1 (Auckland–
Christchurch, Fig. 1), which represents zonal flow
anomalies across most of the length of New Zealand,
and M1 (Hobart–Chatham Islands), which represents
meridional flow anomalies for a wide region from Aus-
tralia to the oceanic areas east of New Zealand. The
indices are available from 1896 onward (Fig. 3). The
trend analysis uses high-pass filtered versions, m1 and
z1. There is evidence of observation errors in the early
pressure data for some stations and hence errors in Z1
and M1 for the earlier decades. No attempt at correction
has been made as little is known about the type of ba-
rometers used during these periods. Such measurement

errors will not cause error in our trend estimates, owing
to the use of the high-pass filter, but they may slightly
increase the variance and hence increase the confidence
intervals of the trend estimates.

5. Fitting models to data

The procedures described in section 3 were first ap-
plied to the mean temperature series AT, with the linear
trend option. The model details and related mathemat-
ical considerations are as follows.

Step (a). The chosen high-pass filter is applied to SOI,
Z1, and M1 to produce series soi, z1, and m1. The
correlations of soi, z1, and m1 with time are small and
not significant indicating that there is little colinearity
between linear trend and the explanatory variables.

Step (b). ARMA(p,q) models with p # 10, q # 5
were examined, but only the results for white noise
ARMA(0,0) residuals and red noise ARMA(1,0) resid-
uals are worth listing (models 1 and 2 in Table 1). On
the basis of lowest AIC, we find that the residuals of
the AT series are an ARMA(1,0) process and hence that
serial correlation in the New Zealand temperature series
is significant.

Woodward and Gray (1993) showed that if {yt} is
modeled as a trend with ARMA residuals, but is actually
an ARIMA process, then erroneous trends are likely to
be detected. They later developed a bootstrap approach
to discriminate between these two models, showing that
the ARIMA model is statistically preferred for the main
global temperature series, and that on this basis the sig-
nificance of the trends in these series cannot be estab-
lished (Woodward and Gray 1995). Returning to our
regional series, if the process is ARIMA(p,1,q) and the
ARMA(p 1 1,q) model is fitted to the series, its char-
acteristic equation in x

2 p11ˆ ˆ ˆ1 2 f x 2 f x 2 . . . 2 f x 5 0, (14)1 2 p11

where are the estimated autoregressive coefficients,f̂i

is likely to have a near-unit root x1; that is, zx1 2 1z ,
0.2. However, calculations on AT without trend show
that for p # 10, q # 5 there are no near-unit roots for
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TABLE 2. Fraction of realizations from models yt 5 et for which
significant trend is incorrectly detected at the nominal 5% level. Num-
ber of realizations 5 100; realization length 5 100; methods and
results ‘‘WG3’’ and ‘‘WG4’’ taken from Woodward and Gray (1993);
‘‘proposed’’ is this paper’s method.

Model for residuals WG3 WG4 Proposed

ARMA(1,0), f1 5 0.5 0.05 0.05 0.05
ARMA(1,0), f1 5 0.9 0.20 0.17 0.13
ARMA(1,0), f1 5 0.95 0.35 0.31 0.20
ARIMA(1,1,0), f1 5 0.7 0.63 0.58 0.23

the residual model ARMA(p,q), and therefore the ARI-
MA(p,1,q) process is not likely in AT.

Woodward and Gray (1993) examined several meth-
ods to determine linear trend, and carried out simula-
tions of each to determine the probability of incorrect
detection of trend, when no trend is present. They
showed that excessive significance is a serious problem
when a unit root or very near unit root is present, and
that better results are obtained when autocorrelation is
modeled. We have carried out parallel simulations (Ta-
ble 2), which show that where the trend is estimated by
our proposed method, the probability for incorrect de-
tection of trends is lower than for the two methods (WG3
and WG4) proposed by Woodward and Gray (1993),
though the problem of excessive significance for the
unit root or very near unit root case remains. In the case
of AT, the fitted first order autocorrelation is 5 0.42,f̂1

so the root of the characteristic equation (1/ ) is suf-f̂1

ficiently far from unity and our significance test is valid.
Bloomfield (1992) showed that for the IPCC and Han-

sen–Lebedeff series, the AIC for linear trend and sta-
tionary ARIMA(p,d,q) (i.e., 0 , d , 0.5) residuals
(long memory) is less than the AIC for linear trend with
ARMA(p,q) residuals (short memory). For AT, the AIC
for the long memory model (using S-PLUS routine ‘‘ari-
ma.fracdiff’’) is more than the AIC for the short memory
model. However to the best of our knowledge, there is
not a theoretical basis for using AIC to compare these
two different models. In our regional series, if the pro-
cess is trend plus long memory residuals but we fit a
model of trend plus ARMA(p,q) residuals, then the es-
timated p is likely to be large. Since we find p 5 1 for
the AT series, we conclude that AT does not contain a
long memory residual process.

Step (c). Table 1 shows that for AT the significant
explanatory variables are soi and m1 (but not z1). The
optimal linear trend model for AT is model 6. We find
that the use of the explanatory variables provides not
only a lower AIC, but also an estimated autocorrelation
function that is closer to the theoretical function for the
derived ARMA(1,0) model. This tends to support the
appropriateness of using explanatory variables.

Step (d). Table 1 also shows that the 22 ln likelihood
ratio for model 6 against model 9 (for the selected ex-
planatory variables but no trend) is 20, which passes

the 99.9 percentile of the x2(1) distribution. The linear
trend is therefore significant at the 0.1% level.

By repeating steps (a)–(d) with the exponential trend
model fitted to AT, we find that the exponential trend
is also significant. The AIC for the optimal exponential
model (44.4) is similar to the AIC for the linear model
9 (44.2), which means that the exponential model is an
acceptable alternative for AT. It also indicates that over
the 1896–1994 period the temperature trend itself may
be rising. Although the exponential model is as valid
as the linear model, it has no statistical advantage and
is not used any further in the present study.

Step (e). For the preferred model 6, the 95% confi-
dence interval for the linear trend is 0.11 6 0.0358C
decade21. The linear trends for the other models are
relatively insensitive to the choice of residual process
and all fall in the above range. The linear trends are
also insensitive to the choice of explanatory variable
set, owing to the removal by the high-pass filter of es-
sentially all long-term variation in the explanatory vari-
able series. The advantage of using the soi and m1 ex-
planatory variables is shown by the 15% reduction in
standard deviation of model 6 relative to model 7, that
is, by the 15% reduction in the trend estimate’s confi-
dence interval.

Comparison of the standard deviations of the AT trend
coefficients shows that the neglect of serial correlation
(model 1), which is a common practice, would under-
estimate the confidence interval by 36% when explan-
atory variables are used (model 2), and by 30% when
no explanatory variables are used (model 8 vs model
7). It is likely that similar underestimation will occur
in other regions of the globe, especially where oceanic
or other slowly varying climate processes confer inter-
annual persistence on temperature series.

The above procedures have been individually applied
to MAXT, MINT, DTR, and SST, and also to the SST–
AT difference series. All the series are best represented
by the ARMA(1,0) model. The soi and m1 explanatory
variables are required for all the maximum, minimum,
and mean air temperature models (though m1 is not
available prior to 1896). However, neither explanatory
variable is needed for DTR, presumably because the
impacts of soi and m1 are similar for MAXT and MINT.

6. Results and discussion

The trend results for all series are listed in Table 3.
The first main result is that the New Zealand mean an-
nual air temperature series exhibits a highly statistically
significant, positive linear trend. The linear trend esti-
mate for AT (1896–1994) is 0.11 6 0.0358C decade21

(95% confidence level). To allow for comparison with
global trend estimates, calculations are presented in Ta-
ble 3 for the periods used by Bloomfield (1992) for the
IPCC series (1861–1989, 0.037 6 0.0108C decade21),
and for the Hansen–Lebedeff series (1880–1987, 0.055
6 0.0158C decade21). The New Zealand trend is about
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TABLE 3. Estimates of statistically significant trends for various
temperatures series and periods of record (see section 4 for the names
of time series). The optimal explanatory variables for each series are
listed. The optimal residual model is ARMA(1,0) in all cases.

Series Period
Explanatory

variables

Trend
coefficient
8C/decade

s.d. of trend
coefficient
8C/decate

AT 1896–1994 soi, , ml 0.1101 0.0175
AT 1861–1989 soi 0.0701 0.0153
AT 1880–1987 soi 0.0941 0.0166
MAXT 1896–1994 soi, , ml 0.0896 0.0199
MINT 1896–1994 soi, , ml 0.0981 0.0169
DTR 1909–94 20.0282 0.0011
MAXT 1951–90 soi, , ml 0.0298 0.0646
MINT 1951–90 soi, , ml 0.1272 0.0484
DTR 1951–90 20.0992 0.0195
SST 1928–94 soi, 0.0693 0.0276
AT 1928–94 soi, , ml 0.1186 0.0370
SST-AT 1928–94 soi, , ml 20.0627 0.0246
SST 1951–90 soi, 0.0239 0.0551
AT 1951–90 soi, , ml 0.0962 0.0628
SST-AT 1951–90 soi, , ml 20.0674 0.0279

twice the trend in these global series. The estimated
trend in AT is dependent on the period examined, which
is to be expected given the long-term variations seen in
Fig. 2, but all are consistently upward.

Our analysis cannot identify the source of the trends
detected, but some general comment is possible. First,
although the dataset is thought to be of reasonably high
quality and to be free of significant false trends, sys-
tematic measurement error cannot be ruled out. Second,
long-term natural changes in climatic processes are pos-
sible, especially in the Pacific basin where long time-
scale oceanic processes may be present. There is some
evidence in Fig. 3 of multidecadal trend in the unfiltered
regional circulation indices M1, Z1, though these may
be due to measurement error. Third, the trend value of
0.118C decade21 is very similar to the lower rates of
global temperature rise predicted by greenhouse gas
forced transient GCMs (without aerosol effects) for the
first few decades of the 6–10 decades needed to reach
a doubling of CO2 (Gates et al. 1992). However, these
models also predict that the warming trends for oceanic
areas and especially the Southern Hemisphere will be
smaller, not larger, than those of the more continental
Northern Hemisphere, owing to the sequestration of heat
by the oceans (Gates et al. 1992). The smaller Northern
Hemisphere trend may be due to regional sulfate aerosol
pollution, which is expected to cause a cooling effect
that may substantially offset the predicted heating due
to enhanced greenhouse gases, both through direct ra-
diative effects (Taylor and Penner 1994), and through
indirect effects on cloud nucleation and cloud charac-
teristics (Jones et al. 1994).

The second main result concerns statistically signif-
icant trends in maximum temperature, minimum tem-
perature, and diurnal temperature range. Taken over the
whole period 1896–1994, the upward trend in the
MAXT and MINT are similar (0.09 and 0.108C de-

cade21). The trend in DTR for the available homoge-
neous period 1908–94 is slightly downward (20.038C
decade21). However, over the more recent period, 1951–
90, the trend in maximum temperature becomes statis-
tically insignificant (0.03 6 0.138C decade21), while the
trend in minimum temperature remains high and statis-
tically significant (0.13 6 0.108C decade21; the largest
of the trends found in our study). Correspondingly, the
DTR trend over 1951–90 reaches 20.10 6 0.048C de-
cade21, which is also statistically significant. Salinger
(1995) identified a DTR decline of 20.248C from 1941–
90 in his New Zealand Region T3 series, and found
some indication of seasonal and orography-related vari-
ation. Figure 2 indicates that the DTR decline is part of
a relatively recent systematic multidecadal nonlinear
variation. Over the period 1909–50 the DTR trend is
not statistically different to zero. The exponential trend
model does not suit the 1909–94 DTR dataset, but the
piece-wise two-section linear trend model, chosen to
have a turning point at 1950 and no trend in the first
section, was found to be significant at the 1% level using
the x2 test.

The diverging trends in MAXT and MINT for 1951–
90 are consistent with the IPCC conclusion that ‘‘the
observed global warming over the past several decades
is primarily due to an increase in daily minimum tem-
peratures with little contribution from daily maximum
temperatures’’ (Folland et al. 1992), and the correspond-
ing DTR trend is similar to those reported by Karl et
al. (1993) for various other regions. The cause of this
DTR behavior is not yet clear. Karl et al. argue that it
is not expected as a result of enhanced greenhouse gas
concentrations and that the preferred explanation is in-
creasing cloudiness. The global extent of the DTR re-
sponse indicates that it cannot be a direct radiative re-
sponse to regional sulphate aerosol pollution, though
aerosol-induced changes in cloud condensation nucleii
concentrations and droplet distributions (Jones et al.
1994) may affect cloud amounts elsewhere. Cloudiness
is difficult to define and measure accurately, but studies
to date indicate that it is increasing, mainly in Northern
Hemisphere continental regions (Folland et al. 1990,
1992). No results on cloudiness trend are available for
the New Zealand region. Australian datasets show a
clear tendency toward cloud cover increases (252 out
of 318 stations) but no firm conclusion on trends is
possible (Jones and Henderson-Sellers 1992).

The third main result concerns the smaller trend for
regional SST relative to that for national mean air tem-
perature. The SST trend estimated for 1928–94 was sta-
tistically significant at 0.07 6 0.068C decade21. This is
noticeably smaller than the AT trend for the same period,
although the trends are not statistically different. To
pursue this issue, we formed a series of the SST-AT
difference and examined this for trend. The result was
statistically significant at 20.06 6 0.058C decade21. The
smaller confidence interval for the SST–AT trend rel-
ative to the SST and AT trend means there is unmodeled
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short-term climatic variation that is correlated between
the SST and AT series. Because the available SST data
density increased markedly after about 1950, further
analyses were done for the more reliable but shorter
1951–90 period. The resulting trends of 0.028C decade21

for SST and 0.108C decade21 for AT are not individually
significant, but the trend of 20.07 6 0.06 in SST–AT
is statistically significant. (Again, there is a substantial
reduction in variance in the SST–AT trend, relative to
the individual SST and AT trends.) The similar SST–
AT trends for the two periods, 1951–90 and 1928–94,
may suggest the source processes are relatively stable
and long term. However, given the small sample size
and the marginal significance of the trends, some caution
is warranted in the interpretation of the trends. On this
point, to test the validity of the significance test used,
a simulation study using the S-PLUS routine ‘‘ari-
ma.sim’’ was performed on 500 ARMA(1,0) series with
the sample size (40), autoregressive coefficient (0.35),
and innovation variance (0.018758C2) derived from the
SST–AT series. This showed that, at the 5% significance
level, the rate of false positive trend detection using our
method was less than 5%, which confirms that the sam-
ple size and test approach are acceptable.

There is a possibility that systematic error in the SST
data may be a factor in this result, though the main
changes in SST observation (Folland at al. 1990) would
tend to make a positive rather than negative contribution
to the SST trend. If the SST–AT trend is real, and the
AT data can be taken as representative of the surround-
ing marine air temperature (perhaps with a constant bias)
then for this region we can conclude that the atmosphere
and ocean are not in stable thermal equilibrium on the
multidecadal scale, and that there is a long-term at-
mospheric warming process, which is causing additional
trend in air temperature beyond that expected from the
direct ‘‘slave’’ response of air temperature to SST trend.
We cannot draw a conclusion on the size of atmospheric
contribution to the SST trend as for this limited region
there may be long-term oceanic variation unrelated to
atmospheric forcing. We can also surmise that the
changing difference between air and sea surface tem-
perature will result in changing ocean–atmosphere heat
fluxes, either as an increasing flux from the atmosphere
to the ocean or as a reducing flux from the ocean to the
atmosphere. Since the difference between marine air
temperature and SST in this midlatitude region is small
on average, the 0.58C net change in SST–AT over the
period 1928–94 will represent a sizeable change in this
difference and hence potentially in heat fluxes (assum-
ing little change in the mechanics of surface exchange).
This, in turn, suggests that there may be a large trend
in atmosphere–ocean net heat fluxes for this region of
the globe, the direction of the change in flux being to-
ward the ocean.

A final general point worth noting is the potential for
improved detection capability using paired quantities,
such as occurred with our DTR and SST–AT trend anal-

yses. First, there is the possibility of obtaining infor-
mation on climatically important quantities, for exam-
ple, the unknown atmospheric radiative process in the
DTR case, and the atmosphere–ocean heating rates in
the SST–AT case. Second, there is the possibility of
signal to noise gains. Whether a net gain occurs will
depend on the correlation between the two series’ sig-
nals, the correlation between the two series’ unmodeled
variation, and the magnitudes of the random noise com-
ponents. Differencing will reduce the effect of unmod-
eled variations that are positively correlated (e.g., as in
MAXT and MINT), but it also will increase the random
component and reduce the size of the trend signal if the
component signals in the two series are positively cor-
related. Differencing may prove advantageous where
specific climate trend signatures are expected, for ex-
ample, in latitudinal and vertical temperature gradients,
and coastal-interior contrasts.

7. Conclusions

Statistically significant trends have been detected in
a set of regional-average temperature series, through the
application of a systematic statistical approach to choos-
ing optimal trend models, which simultaneously deals
with long-term trends, serially correlated residuals, and
short-term regional climatic influences.

The trends in the New Zealand national-mean air tem-
perature and the regional mean SST show interesting
features that appear to have relevance to global change
issues. The trends are generally consistent with the IPCC
scenario of enhanced greenhouse forcing in which tem-
perature trends in the oceanic midlatitude Southern
Hemisphere are relatively modest owing to sequestra-
tion of heat by natural oceanic processes, and in which
the expected larger temperature trends in the Northern
Hemisphere are masked by atmospheric cooling arising
from some other factor, such as anthropogenic sulfate
aerosol pollution. The results also support the view that
there is another major atmospheric change factor of
global extent, possibly increasing cloudiness, that is re-
ducing the diurnal temperature range.
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