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ABSTRACT

A unified statistical approach to identify suitable structural time series models for annual mean temperature
is proposed. This includes a generalized model that can represent all the commonly used structural time series
models for trend detection, the use of differenced series (successive year-to-year differences), and explicit methods
for comparing the validity of no-trend nonstationary residuals models relative to trend models. Its application
to Intergovernmental Panel on Climate Change global and latitude-belt temperature series reveals that a linear
trend model (starting in 1890, with Southern Oscillation index signal removal and a red noise residuals process)
is the optimal model for much of the globe, from the Northern Hemisphere Tropics to the Southern Hemisphere
midlatitudes, but that a random stationary increment process (with no deterministic trend) is preferred for the
northern part of the Northern Hemisphere. The result for the higher northern latitudes appears to be related to
the greater climate variability there and does not exclude the possibility of a trend being present. The hemispheric
and global series will contain a mixture of the two processes but are dominated by and best represented by the
linear trend model. The latitudinal detectability of trends is oppositely matched to where GCMs indicate greatest
anthropogenic trend, that is, it is best for the Tropics rather than for the high latitudes. The results reinforce the
view that the global temperatures are affected by a long-term trend that is not of natural origin.

1. Introduction

The central task of climate change detection studies
is to determine whether an observed change or trend is
‘‘significant,’’ that is, highly unusual relative to the rich
background of natural variability, and unlikely to have
occurred by chance alone (Santer et al. 1996). This re-
quires a statistical model that appropriately represents
the variability, both natural and anthropogenic, and that
allows the testing of significance of the model for the
data series being examined. A number of structural time
series models (e.g., linear trend plus red noise) have
been proposed (Wigley and Jones 1981; Jones 1989;
Gordon 1991; Bloomfield 1992; Bloomfield and Nychka
1992; Galbraith and Green 1992; Woodward and Gray
1995; Visser and Molenaar 1995; Zheng et al. 1997),
but unfortunately the different models give different
conclusions, not just in the value and statistical signif-
icance of a trend, but also in the validity of the trend
model itself.

The structural time series model usually used to mod-
el global-mean temperature comprises a deterministic
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trend plus random residuals about the trend, where the
residuals are assumed to represent the natural variability,
including the autocorrelation structure of the series, and
the trend is the putative response of temperature to an-
thropogenic forcings (Bloomfield 1992; Zheng et al.
1997). Such models by themselves cannot distinguish
between sources of trend; this problem of attribution,
of linking trends to causes, is an additional issue (Santer
et. al. 1996). Only the problem of detection is considered
in the present paper.

Global-mean temperature has also been modeled as
a structural time series having nonstationary residuals
but no deterministic trend component (Gordon 1991;
Woodward and Gray 1995; Gordon et al. 1996). If such
models were indeed correct, then the fitting of a model
comprising a trend and stationary residuals could result
in the erroneous detection of a trend. These authors are
cautious in their conclusions, none claiming that global
warming does not exist, but they argue that statistically
we cannot rule out the possibility that the past century’s
rise in global temperatures is simply a result of the
natural variability and thus may not continue in the fu-
ture. Their results present a disconcerting challenge to
the conventional view that global temperatures are rising
because of some external forcing, probably associated
with anthropogenic factors, and are likely to continue
to rise.

In the work reported here, the main currently used
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structural time series models for detecting anthropo-
genic forcing in annual mean temperatures are reviewed
and are developed into a proposed unified statistical
model. Two key features are 1) the modeling of residuals
as stationary increment processes, which covers all the
stationary and nonstationary residual models commonly
used in trend analysis, and 2) the use of differenced
series, which results in stationary residuals and hence
allows the use of the procedures for parameter esti-
mation and model choice described by Zheng et al.
(1997). Differencing also partly deals with the techni-
cally difficult question (Bloomfield 1992) of how to
separate a linear trend from low-frequency natural var-
iability, since the latter is largely removed in the dif-
ferenced series and the linear trend term transforms to
a constant.

By applying these methods to the various global,
hemispheric, land, and ocean Intergovernmental Panel
on Climate Change (IPCC) temperature series (Nicholls
et al. 1996; Jones 1996), and to similarly constructed
temperature series for latitude belts, we have been able
to clarify the circumstances under which the determin-
istic trend model and the nontrend model are each most
appropriate. We find that the model choice varies geo-
graphically, but that this occurs in a systematic way and
is consistent with the hypothesis that rising temperatures
represent a trend that is associated with external forcing
and is likely to continue. In particular, we find that the
deterministic trend model is optimal over much of the
globe, but becomes nonoptimal in the higher Northern
Hemisphere latitudes, possibly as a result of higher nat-
ural variability there.

2. Statistical models

The proposed statistical model for trend detection in
an annual mean temperature series {yt} of T years is

yt 5 m 1 ft(l1, . . . , lr) 1 b1x1,t 1 · · · 1 bkxk.t 1 «t,

t 5 1, . . . , T, (1)

where m is the temperature normal over T years;
f t(l1, . . . , lr) is a function of t with parameters {l1,
. . . , lr}; r is the number of parameters; {xi,t, t 5 1,
. . . , T} is the ith explanatory variable (such as the
Southern Oscillation index), which is observable and
noncolinear with f t; k is the number of explanatory
variables; b is the coefficient for the ith explanatory
variables; and {«t, t 5 1, . . . , T} is the residual time
series, which is an autoregressive integrated moving av-
erage (ARIMA) (p, 1, q) process (see next paragraph).
The function f t(l1, . . . , lr) represents the deterministic
trend to be detected, while the functions b1x1,t, 1 · · ·
1 bkxk.z 1 «t represent the components of natural var-
iability that can be explicitly modeled.

A time series {j t} is called an autoregressive inte-
grated moving-average process of order (p, d, q) [AR-
IMA(p, d, q), Brockwell and Davis 1996]; if

¹dj t 2 f1¹dj t21 2 · · · 2 fp¹djt2p

5 ht 1 u1ht21 1 · · · 1 uqht2q, (2)

where p, d, and q are nonnegative integers; {f 1, . . . ,
f p} are the autoregressive coefficients; {u1, . . . , uq}
are the moving average coefficients; {ht} is a white
noise process with variance s 2 (the innovation vari-
ance); and = is the difference operator, that is,

=yt 5 yt 2 yt21, ¹2yt 5 =(=yt), (3)

etc. In the case where d 5 0 (=0 represents the identity
operator), {jt} is an autoregressive moving-average pro-
cess (ARMA) of order (p, q); [ARMA(p, q), Brockwell
and Davis 1996].

A differenced series of the annual mean temperature
can be constructed by applying = to the both sides of
model (1):

=yt 5 =ft(l1, . . . , lr) 1 b1=x1,t 1 · · · 1 bk=xk.t 1 =«t,

t 5 2, . . . , T, (4)

where the residuals {=«t} are necessarily an ARMA(p, q)
process, because it is assumed that {«t} is an ARIMA(p,
1, q) process. This equation (4) for the differenced series
is therefore in the same format as that presented by
Zheng et al. (1997), and its trend = f t(l1, . . . , lr) may
be estimated by the approach described by Zheng et al.
(1997). The trend in the original series, f t(l1, . . . , lr),
is then determined up to a constant, which can be ne-
glected as only the derivatives (slopes) are of interest
in trend analysis. A critical advantage of differencing
is that it enables the direct quantitative testing of the
relative quality of competing trend 1 ARMA(p, q) and
no-trend 1 ARIMA(p, 1, q) models. Previously, this was
not possible (Zheng et al. 1997). Further discussion of
this issue is given in section 3d.

More detailed explanations for each term of model
(1) are given below.

a. Trend term

The three simplest options for the trend function are
as follows.

1) Linear trend

f t(l1) 5 l1t (5)

is the most commonly used form for detecting en-
hanced greenhouse gas forcing (Wigley and Jones
1981). The corresponding difference function is

= f t(l1) 5 l1. (6)

2) Bilinear trend

f t(l1, l2) 5 l1t when t , t0,

5 l1t0 1 l2(t 2 t0) when t $ t0, (7)

where t0 is a turning point, may be used to test for
a significant change in trend at some point in time.
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Examples include testing whether the rate of global
temperature rise increased around the turn of the
century (Santer et al. 1996), or identifying the year
from which the decline in diurnal temperature range
becomes significant (Zheng et al. 1997). The cor-
responding difference function is

= f t(l1, l2) 5 l1, when t # t0,

5 l2, when t . t0. (8)

3) Quadratic trend

f t(l1, l2) 5 l1t 1 l2t2 (9)

can be introduced to test for a nonlinear response
(Woodward and Gray 1995). Nonlinear types of in-
creases are present both in projected greenhouse gas
concentrations (Schimel et al. 1996) and in GCM-
modeled global temperature (Kattenberg et al. 1996),
and in future decades accelerating increases of tem-
perature may become more evident. The difference
function for the quadratic trend is

= f t(l1, l2) 5 (l1 2 l2) 1 2l2t. (10)

An exponential trend function is also a possible non-
linear form (Zheng et al. 1997). However, the quadratic
and other linear models can be expressed as a linear
combination of a group of determined functions of t,
that is,

f t(l1, . . . , lr) 5 l1 f 1,t 1 · · · 1 lr f r,t, (11)

which gives them a computational advantage over the
exponential trend in respect to estimating trends and
confidence intervals.

b. Explanatory variables

Some part of the natural variability in a temperature
series can be described by explanatory variables that
are measurable and have a clear physical sense. The
Southern Oscillation index (SOI) is known to have a
strong association with the global temperature series
(Jones 1989) and with some regional temperature series
(Zheng et al. 1997). Other variables, such as sunspot
counts and Lamb’s volcanic dust veil index, may be
physically plausible sources of natural variability, and
their potential roles can be tested by including them in
model (1) as explanatory variables.

All such explanatory variable series must be subjected
to high-pass filtering (with a filter cutoff of about 10
yr) prior to doing the regression model development
and analysis, to ensure the estimated trend is uniquely
represented by f t [see Zheng et al. (1997) for more
detailed discussion]. Explanatory variables therefore
play no role in representing any natural sources of trend;
their role is to remove known short-term variability that
otherwise would contaminate the residuals.

c. Residuals

Residuals characterize the natural variability not ex-
plained by the explanatory variables. Galbraith and
Green (1992), Richards (1993), and Woodward and
Gray (1995) introduced the ARIMA(p, 1, q) form for
modeling nonstationary residual time series {«t, t 5 1,
. . . , T}. The random walk residuals model introduced
by Gordon (1991) is a special form of this, where p 5
q 5 0.

If the ARIMA(p, 1, q) moving-average coefficients
u1, . . . , uq satisfy the restriction

u1 1 · · · 1 uq 5 21, (12)

then the residual series {«t, t 5 1, . . . , T} reduces to
the stationary ARMA(p, q 2 1) process, with the same
autoregressive coefficients f 1, . . . , f p but different
moving-average coefficients {1 1 ui, j 5 1, . . . ,jSi51

q 2 1}. Equation (12) is thus a condition of stationarity.
This is the residuals model introduced by Bloomfield
(1992) and used by Zheng et al. (1997). The proposed
model (1) is therefore more general than the model de-
scribed in Zheng et al. (1997). In particular, if q 5 1
and u1 5 21, {«t, t 5 1, . . . , T} is an order-p auto-
regressive process [AR(p) 5 ARMA(p, 0); Brockwell
and Davis 1996]. Furthermore, in this situation, if p 5
0, then {«t, t 5 1, . . . , T} is a white noise process
(e.g., as used by Wigley and Jones 1981); while if p 5
1, it is a red noise process (e.g., as used by Wigley et
al. 1989).

Visser and Molenaar (1995) introduced a residuals
model ARIMA(p, d, q) with selected d . 1 for specific
data series. However, they gave no rule for choosing d
and hence there is no way of knowing whether the cho-
sen d are optimal.

In our earlier paper (Zheng et al. 1997) we were un-
able to statistically directly compare the utility of the
ARIMA(p, 1, q) model with its subset ARMA(p, q)
form, but for the series considered we were able to reject
the ARIMA(p, 1, q) model by means of indirect tests
and simulations. This problem was also addressed by
Galbraith and Green (1992) and Richards (1993) using
different methods. However, their methods can only be
applied to series without trend, and hence their results
on annual mean temperatures are dependent on the prior
detrending procedure used. In the present paper, the use
of differenced series allows direct statistical comparison
of the residuals models and no detrending procedure is
required.

3. Fitting procedure

For each chosen structural time series model to be
examined (e.g., linear trend plus residuals), the fitting
procedure we propose comprises the following five
steps. This procedure includes several improvements in
concept and technique over the earlier set of steps de-
scribed in Zheng et al. (1997).
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a. Remove low-frequency variability from candidate
explanatory variable series

Filter the candidate explanatory variable series, for
example, by the S-PLUS routine ‘‘filter’’ (StatSci 1993),
where a 13-term high-pass Gaussian filter (with a 50%
response at 10 yr) is constructed by the S-PLUS routine
‘‘demod.’’

b. Select optimal trend model and optimal no-trend
model

Four types of model were considered: no trend 1
stationary residual, trend 1 stationary residuals, trend
1 nonstationary residuals, and no trend 1 nonstationary
residual. In each case, the optimal explanatory variables
and order (p, q) were determined using the Bayesian
Information Criteria (BIC), where the smallest value of
BIC implies the best fit.

For an integer m ($p), define the BIC (Brockwell
and Davis 1996) for (1) as

BIC(=ym11, . . . , =yT |=y1, . . . , =ym)

5 22 ln max{L(=«m12, . . . , =«T |=«2, . . . , =«m11)}

1 (1 1 r 1 k 1 p 1 q 2 s(u1, . . . , uq)) ln(T 2 1),

(13)

where {«t} is a realization of an ARIMA(p, 1, q) pro-
cess; the function s(u1, . . . , uq) takes a value of 1 or 0
depending on whether u1, . . . , uq satisfy the stationarity
restriction described above in (12). Here L(=«m12, . . . ,
=«T | =«2, . . . , =«m11) is the conditional likelihood of
=«m12, . . . , =«T given =«2, . . . , =«m11 and is a function
of l1, . . . , lr; b1, . . . , bk; f 1, . . . , f p, u1, . . . , uq

[for the detailed form of L, see StatSci (1993), Eq.
(16.46)]. Its maximum is taken over all the parameters.
The trend coefficients, the coefficients for the selected
explanatory variables, the autoregressive coefficients,
the moving-average coefficients, and the innovation var-
iance are estimated simultaneously and are denoted as

, . . . , ; , . . . , ; , . . . , ; , . . . , ;l̂ l̂ b̂ b̂ f̂ f̂ û û1 r 1 k9 1 p 1 q

, respectively.2ŝ
If the selected trend function is in the form of (11),

then the S-PLUS routine ‘‘arima.mle’’ can be applied
to estimate the BICs. The routine’s inputs are the dif-
ferenced temperature series, the differenced selected ex-
planatory variables, and the order (p, q). However, the
routine only works for invertible ARIMA(p, d, q) mod-
els, that is, where all the roots of the polynomial equa-
tion

u1z 1 · · · 1 uqzq 5 21 (14)

lie outside of the unit cycle. If the differenced series
meets the stationarity restriction (12), Eq. (14) for the
residuals of the differenced series will have the unit root.
Therefore the ARMA model for the residuals of differ-
enced series will be noninvertible and the S-PLUS rou-

tine arima.mle will fail. To deal with this, we modify
(12) as follows:

u1 1 · · · 1 uq 5 20.999 999 (15)

and apply the invertible transformation proposed by
Jones (1980) (which has been set as a default for ari-
ma.mle).

While an ARIMA(p, 1, q) process with the restriction
(12) is equal to the stationary ARMA(p, q 2 1) process,
this is not mathematically true when the restriction is
changed to (15), especially for the asymptotic behavior.
To further examine this, we have simulated the processes
for 100–200-yr series and find that the results are very
similar. For example, when the trend 1 SOI 1
ARMA(1, 0) model and the trend 1 SOI 1 ARI-
MA(1, 1, 1) model with restriction (15) are fitted to the
temperature series studied in this paper, the estimated
regression coefficients and autoregressive coefficients
are exactly the same and the relative errors for the es-
timated innovation variances are only about 0.5%. On
this basis, we accept the validity of this use of ARI-
MA(p, 1, q) residuals with restriction (15).

If the selected trend function is not in the form (11)
(e.g., it is an exponential trend as described by Zheng
et al. 1997), the S-PLUS routine ‘‘nlminb’’ can be used
together with arima.mle for the estimation (Zheng et al.
1997).

Visser and Molenaar (1995) introduced a residuals
model ARIMA(p, d, q) with selected d . 1 for specific
data series, but it is difficult to accommodate such a
model using the methods proposed in the present paper,
because the second-order differencing required [see (3)]
would eliminate any linear trend present in such series.
It is therefore desirable to check whether d . 1 is pre-
ferred or not. If the derived optimal model has d 5 0,
that is, , . . . , satisfy the stationary restriction (12),û û1 q

the chance of the real d being greater than 1 is very
low. Otherwise, the possibility of the real d being greater
than 1 can be checked through the characteristic equa-
tion (Brockwell and Davis 1996)

1 2 2 · · · 2 5 0.pf̂ z f̂ z1 p (16)

The equation can be solved by the S-PLUS routine
‘‘polyroot.’’ An ad hoc rule is that if the characteristic
equation (16) has a near-unit root x1, (e.g., |x1 2 1|
,0.2), then d .1 is likely. Otherwise, d 5 1 is optimal.
More details on tests for unit roots may be found in
Woodward and Gray (1995). To date, we have not en-
countered any global or regional temperature series for
which d . 1 occurs or is likely to occur.

c. Test goodness of fit for optimal models

To ensure that the optimal trend models obtained in
section 3b are not illposed statistical models, their good-
ness of fit has to be checked. The single most important
diagnostic is the noise characteristics of the standardized
prediction error series. If the model is correct, then this
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series should behave approximately like a white noise
process with zero mean and unit variance (Brockwell
and Davis 1996). The whiteness can be tested by the
following goodness-of-fit statistic:

K

2Q 5 (T 2 1 2 p) ĝ , (17)OK k
k51

where is the estimated kth order autocorrelation ofĝk

the prediction error series, and K is a fixed maximum
number of lags between 10 and 20. If the correct model
is fitted, then the goodness-of-fit statistic should be ap-
proximately distributed as a x2(K 2 r 2 k 2 p 2 q).
The p values of the goodness-of-fit statistic can be es-
timated by the S-PLUS routine ‘‘arima.diag.’’ If there
exists a K between 10 and 20 such that QK is significant
at the 5% level, then the optimal model is illposed and
therefore cannot represent the temperature series. If this
is the case, the model must be discarded.

d. Discriminate between models

The final choice of model is based principally on
which has the least BIC value, subject to the goodness-
of-fit test and with consideration to the value of near-
unit roots if any. In some cases, the choice may not be
clear cut. It should be noted that the BIC approach can
only be applied to ‘‘nested’’ models, that is, models of
the same statistical family. An important reason for us-
ing differenced series is to nest models.

The simulation study described in section 3b above
indicates that the BIC approach works well under the
assumption that the true residual model is either ARI-
MA(p, 1, q 1 1) with restriction (12) [i.e., ARMA(p, q)]
or ARIMA(p, 1, q) without near-unit root for (14). This
represents a weaker restriction (wider range of possi-
bility) than the traditional restriction that the true re-
sidual model is only ARMA(p, q). Past results found
under the traditional restriction may not necessarily re-
main valid under this weaker restriction.

Our simulation study indicates that the roots of Eq.
(14) for the trend 1 ARIMA(p, 1, q) model are useful
for judging the confidence that may be placed in the
optimal model. If the true model is trend 1
ARMA(p, q), then Eq. (14) for trend 1 ARIMA(p, 1, q)
is likely to have a very near-unit root (e.g., 1.01). Our
experience is that the closer the roots are to unity, the
more likely it is that the true model is trend 1
ARMA(p, q). However, if the true model is no trend 1
ARIMA(p, 1, q), with no near-unit root of (14), then
including a trend component will only add a nuisance
parameter with little likelihood of introducing a near-
unit root to Eq. (14). Therefore, the closer the roots are
to unity, the more unlikely the no trend 1 ARI-
MA(p, 1, q) model is.

The simulation study indicates that when the true re-
sidual model is ARIMA(p, 1, q) with a near-unit root
of (14), the methods described here cannot adequately

distinguish between competing models and hence may
choose the wrong model. Unfortunately, to our best
knowledge, no complete theory is yet available for dis-
criminating between the structural time series models
studied in this paper, which is why we have developed
the current practical approach. Some recent develop-
ments on the topic have been reported by Arellano and
Pantula (1995) and Davis and Dunsmuir (1996), but
their models do not fully cover the regression part of
the structural time series models studied in this paper
and their discrimination procedures rely on particular
nonstandard probability distributions.

As a further check on the discrimination procedure,
for each estimated optimal model, a set of 100 inde-
pendent time series with length T was simulated and the
proposed fitting approach was applied to these simulated
series. It was found that in every case, the original model
was correctly discriminated to very high probability.
This indicates that if the estimated optimal models are
true, the proposed discrimination procedure can effec-
tively identify them.

Last, spectral analysis can be useful to check the
goodness of fit of the models for the differenced series.
We have used the S-PLUS routine ‘‘spec.pgram’’ with
a sequence of length 5 Daniell smoothers for the per-
iodogram. The (a 3 100)% of confidence interval at
frequency l is

n f̂ (l) n f̂ (l)
, , (18)

2 2[ ]x (n) x (n)(11a)/2 (12a)/2

where f̂ is the smoothed periodogram and n, the degree
of freedom of the chi-square distribution, is directly
calculated by spec.pgram. To map the spectral behavior
of the residual models, the formula

2i2pl 2i2plq 2ŝ |1 1 û e 1 · · · 1 û e |1 q
,

2i2pl 2i2plp 22p |1 2 f̂ e 2 · · · 2 f̂ e |1 P

0 # l # 1 (19)

(Brockwell and Davis 1996) is used.

e. Calculate confidence intervals of trends

The choice of optimum model is based on the BIC
difference between trend model and no-trend model, and
not on the significance of a trend estimate, but the con-
fidence intervals of the estimated trends remain of in-
terest. Here we confine ourselves to trend functions that
have a linear combination form (11). Consider the trend
model

=yt 5 l1= f1,t 1 · · · 1 lr= fr,t 1 b1=x1,t 1 · · ·

1 bk9=xk9.t 1 =«t, t 5 2, . . . , T, (20)

where {x1,t, . . . , xk9,t} is the explanatory variables set
selected in step b. The covariance matrix of { , . . . ,l̂1

; , . . . , } can be estimated asl̂ b̂ b̂r 1 k9
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FIG. 1. IPCC global, global ocean, and hemispheric temperature series.

5 (X9V21X)21Ŝ (21)

(Jones 1993), where X is a T 3 (r 1 k9) matrix whose
(t, i)th entry is = f i,t if i # r, or =xi2r,t if i . r and V,
the T 3 T asymptotic autocovariance matrix of resid-
uals, can be estimated by solving Yule–Walker equa-
tions (see appendix) with coefficients { , . . . , ;f̂ f̂1 p

, . . . , } and innovation variance . The Yule–2û û ŝ1 q

Walker equations can be solved using the S-PLUS rou-
tine ‘‘solve.’’ This routine can also be used for calcu-
lating the inverse of a matrix with small dimension, such
as X9V21X. However, the S-PLUS routine ‘‘choleski’’
should be used to calculate the inverse of a matrix with
large dimension, such as V.

The (100 2 a)% confidence interval for the estimated
trend coefficient can be constructed as 6 (Tl̂ l̂ ŝ t1 1 1 a/2

2 1), where ta/2(T 2 1) is the 100 2 a/2 percentile of
the t distribution with T 2 1 degrees of freedom and

is the standard deviation of the estimated varianceŝ1

of . The confidence intervals for other coefficients canl̂1

be constructed in the same way.

4. Data

The proposed approach was applied to the set of six
annual temperature anomaly series 1861–1993 (Fig. 1)
used in the IPCC Second Assessment Report (Houghton
et al. 1996; Nicholls et al. 1996; Jones 1996), and to
annual temperature anomaly series for six latitude belts
(Fig. 2) corresponding to those used in Fig. 3.11 in
Houghton et al. (1996). The IPCC series comprise the
Northern Hemispheric land air temperature (NLT),
Southern Hemispheric land air temperature (SLT) and
global sea surface temperature (OT), and the combined

Northern Hemispheric temperature (NT), Southern
Hemispheric temperature (ST), and global temperature
(GT).

The series for the latitude belts are formed from a 58
lat 3 58 long gridded monthly mean temperature dataset
archived at the Climate Research Unit, University of
East Anglia (Jones 1996). The belts span 708–558N,
558–308N, 308–108N, 108N–108S, 108–308S, and 308–
558S. The areas north of 708N (which comprises only
3% of the global surface) and south of 558S (9% of the
global surface) are excluded owing to data sparseness.
The latitude belt temperature series are plotted in Fig.
2. In the differenced series (not plotted) the high-fre-
quency variability remains evident but the low-fre-
quency variability is largely absent, and any trend is
present as a constant bias.

Figure 3 shows the explanatory variables considered.
The correlation between the SOI and hemispheric and
global temperature is strongest when the index leads
global temperatures by 6 months (Jones 1989), and
therefore we have used the annual mean series of SOI
for 12-month periods starting in the July of the year
preceding the year under analysis. Series of annual sun-
spot count for 1880–1988 and Lamb’s volcanic dust veil
index for 1870–1983, obtained from National Center
for Atmospheric Research archives, were also consid-
ered.

5. Results

We mainly consider the hypothesis of a trend starting
in 1890, following suggestions that temperatures have
increased mainly from the late nineteenth century (Nich-
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FIG. 2. Latitude-belt temperature series.

FIG. 3. Time series for explanatory variables.

olls et al. 1996; Santer et al. 1996). Our generic trend
model is f t 1 SOI 1 ARIMA(p, 1, q), where f t is the
bilinear function (7) with turning point t0 5 1890 and
l1 5 0. Table 1 presents the comparison of results for
the various models and data sets. Because the BIC of
the no trend 1 stationary residual model was always
higher than those of the other options, its results are not
listed. The finally selected models and associated trend
estimates are listed in Table 2.

The SOI (with six-month lead to temperature) is found
to be an explanatory variable in all series except those
for the two latitude belts between 708 and 308N. The
use of the SOI as an explanatory variable significantly
reduces the autoregressive order of the residual series
in most cases. The SOI series is nonstationary (Gu and
Philander 1995) and explains significant variance in the
natural variability (Jones 1989), which means that if its
influence is left in AR(p) [5ARMA(p, 0)] residuals, it
will cause large-order p, as was found by Bloomfield
(1992) and Woodward and Gray (1995). The sunspot
count series is not an explanatory variable. This is sim-
ilar to the results of Richards (1993) and Visser and
Molenaar (1995), despite the different statistical model
used by these authors. Lamb’s dust veil index is not an
explanatory variable, this result being similar to that of
Richards (1993).

a. Latitude belts 708–558N, 558–308N

None of the models considered for these two belts
are illposed (goodness-of-fit statistics not significant at
5% level). The BICs are relatively high, especially for
the northernmost belt, owing to the high amounts of
unmodeled natural variability for these belts. The BICs
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TABLE 1. Structural models for latitude belt and IPCC temperature series. AR( p) 5 ARMA( p, 0) 5 ARIMA( p, 1, 1) with u1 5 21. The
BIC values pertain to the differenced series. The asterisk indicates models that fail the goodness-of-fit test.

Temper-
ature
series

Explana-
tory

variable

Stationary
residual

form
of trend
model

BIC for
trend 1 sta-

tionary
residual

Nonstationary
residual
form for

no-trend model

BIC for
no-trend

1 nonsta-
tionary
residual

Nonstationary
residual

form for trend model
and its root of Eq. (14)

BIC for trend
1 nonsta-

tionary
residual

BIC for
random

walk

708–558N
558–308N
308–108N

108N–108S
108–308S
308–558S

SOI
SOI
SOI
SOI

AR(4)
AR(4)
AR(2)
AR(1)
AR(1)
AR(1)

181.32
213.45

2186.10
2153.32
2178.28
2187.72

ARIMA (3, 1, 1)
ARIMA (3, 1, 1)
ARIMA (2, 1, 1)
ARIMA (1, 1, 1)
ARIMA (1, 1, 1)
ARIMA (1, 1, 1)

169.35
215.63

2187.12
2144.54
2168.70
2186.37

ARIMA (3, 1, 1), 1.37
ARIMA (3, 1, 1), 1.39
ARIMA (2, 1, 1), 1.16
ARIMA (1, 1, 1), 1.01
ARIMA (1, 1, 1), 1.01
ARIMA (1, 1, 1), 1.10

172.51
213.48

2184.24
2148.44
2173.41
2187.04

239.60*
52.10*

2177.90*
2122.74*
2143.92*
2177.52*

NLT
SLT
NT
ST
OT
GT

SOI
SOI
SOI
SOI
SOI
SOI

AR (4)*
AR (1)
AR (4)*
AR (1)
AR (1)
AR (1)

235.56
2145.63
2160.13
2244.99
2260.23
2236.48

ARIMA (4, 1, 0)*
ARIMA (1, 1, 1)
ARIMA (5, 1, 0)*
ARIMA (1, 1, 1)
ARIMA (1, 1, 1)
ARIMA (1, 1, 1)*

236.69
2141.96
2169.32
2241.27
2259.42
2233.45

ARIMA (4, 1, 0)* —
ARIMA (1, 1, 1), 1.06
ARIMA (6, 1, 0), —
ARIMA (1, 1, 1), 1.04
ARIMA (1, 1, 1), 1.18
ARIMA (1, 1, 1), 1.16

233.18
2140.15
2166.09
2240.66
2256.43
2231.58

—
2126.93*
2128.31*
2233.75*
2253.03*
2226.14*

TABLE 2. Trends for latitude belt and IPCC temperature series. The dagger indicates the no-trend model is preferred over the trend model.
The trend coefficients for models in which confidence is high or moderate are in bold type.

Temperature
series Structural time series model

Trend coefficient,
from 1890

8C decade21

Std dev of trend
estimate

8C decade21

708–558N
558–308N
308–108N

108N–108S
108–308S
308–558S

†ƒt 1 ARIMA (3, 1, 1)
†ƒt 1 ARIMA (3, 1, 1)
†ƒt 1 SOI 1 AR (2)
ƒt 1 SOI 1 AR (1)
ƒt 1 SOI 1 AR (1)
ƒt 1 SOI 1 AR (1)

0.128
0.070
0.040
0.041
0.048
0.059

0.6053
0.2347
0.0094
0.0053
0.0045
0.0072

NTL
STL
NT
ST
OT
GT

—
ƒt 1 SOI 1 AR (1)
ƒt 1 SOI 1 ARIMA (6, 1, 0)
ƒt 1 SOI 1 AR (1)
ƒt 1 SOI 1 AR (1)
ƒt 1 SOI 1 AR (1)

—
0.034
0.055
0.048
0.035
0.046

—
0.0070
0.0021
0.0056
0.0060
0.0060

favor the no trend 1 nonstationary residual model, these
being lower by 2 than the BICs for the trend 1 sta-
tionary residual model. The roots of Eq. (14) for the
trend 1 nonstationary residual models are not close to
unity (.1.35). We conclude that the no-trend model is
preferred and that a linear trend cannot be detected in
the temperature series for these belts.

b. Latitude belt 308–108N

The situation for this latitude belt is less clear. None
of the models is illposed. The BICs slightly favor the
no trend 1 nonstationary residual model, whose BIC is
about 1 higher than the BIC for the trend 1 stationary
residual model. However, the root of Eq. (14) for trend
1 nonstationary residual is 1.16, which is relatively
close to unity, which reduces confidence in the no-trend
model. We therefore conclude that the presence of trend
in this belt is a possibility, though at a relatively low
confidence level.

c. Latitude belt 108N–108S and 108–308S

These belts exhibit clear trends. None of the models
is illposed. The BICs of the trend 1 stationary residual
model are about 10 lower than those for the no trend
1 nonstationary residual model, and hence are signif-
icantly in favor of the trend model. The roots of (14)
for trend 1 nonstationary residual are very close to 1.0,
which provides added confidence in the trend models.
We conclude with high confidence that a linear upward
trend is detected in the temperature series for this pair
of latitude belts.

d. Latitude belt 308–558S

A trend is just detectable in this belt. None of the
models is illposed. The BICs are slightly in favor of the
trend 1 stationary residual model whose BIC is about
1 lower than the BIC for the no trend 1 nonstationary
residual model. The root of (14) for the trend 1 non-
stationary residual model is 1.10, but this is not suffi-
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ciently close to unity to provide additional support for
the trend 1 stationary residual model. We therefore con-
clude that a linear upward trend is detected in the tem-
perature series for this latitude belt, but with less con-
fidence than for the 108N–308S region.

e. Northern Hemispheric series

The goodness of fit statistics are significant at the 5%
level for all models for NLT, and for the trend 1 sta-
tionary residual model and the no trend 1 nonstationary
residual model for NT, and therefore none of these mod-
els is acceptable. The trend 1 nonstationary residual
model for NT passes the goodness-of-fit test and thus
allows a trend to be determined. However, the results
indicate that these particular data series are not well
fitted by any of the structural time series considered
here.

f. Southern Hemispheric series

None of the models for SLT and ST is illposed. For
both series, the trend 1 stationary residual model is
favored, its BIC being 3 lower than the BIC for the no
trend 1 nonstationary residual model. The roots of (14)
for the trend 1 nonstationary residual model (1.05) are
close to 1. We conclude that linear upward trends are
detected with good confidence for these series.

g. Global series

For OT, none of the models is ill-posed, and the BICs
marginally favor the trend 1 stationary residual model
(by 1) over the no trend 1 nonstationary residual model.
For GT, the no trend 1 nonstationary residual model is
illposed, and in any case the BICs favor the trend 1
stationary residual model by a good margin, of about
3, over the no trend 1 nonstationary residual model.
For both series, the roots of (14) for the trend 1 non-
stationary residual model are around 1.17, which is not
sufficiently close to unity to provide added confidence
in the trend models. We therefore conclude that linear
upward trends are detected, but with only modest con-
fidence for the OT series.

h. Other models

Results have been calculated for the SOI 1 random
walk models (Table 1). In all cases the model fails the
goodness-of-fit test, and the BICs are higher (often sub-
stantially so) than the corresponding BICs for the op-
timal no-trend model. This indicates that the random
walk model is an illposed model for the IPCC temper-
ature series, presumably because it fails to account for
the series’ temporal correlation. The random walk model
without the SOI explanatory variable (Gordon 1991)
gives even poorer results.

The roots of the characteristic equation for the optimal

trend models were calculated. None of them is close to
unity, which indicates that the residuals model ARI-
MA(p, d, q) with d . 1 is not an appropriate model.

The use of the model f t 1 SOI 1 ARIMA(p, 1, q),
where f t is a linear trend starting at the beginning of
the series in 1861 (i.e., not bilinear), was also examined.
The BICs did not favor this model over the no-trend
model. Likewise, a quadratic trend from 1890 was not
favored over the linear trend model from 1890.

6. Discussion and conclusions

The unified statistical model and testing procedures
we have proposed appear to provide a comprehensive
means to choose structural time series for temperature
trend detection purposes. Their application to the IPCC
global temperature series has allowed the competing
merits of the trend 1 stationary residual model and the
no trend 1 nonstationary residual model to be clarified,
and it has demonstrated that random walk models are
unsatisfactory. In general, bilinear models with trend
starting from 1890 and with SOI signal reduction and
stationary residuals are preferred for at least half of the
globe.

The results for the different latitude belts indicate a
systematic latitudinal pattern of behavior. In the latitude
belts surrounding the equator and the Southern Hemi-
sphere Tropics (108N–108S and 108–308S), the bilinear
trend model (trend starting in 1890, with SOI signal
reduction and red noise residuals) is strongly preferred.
To the south of this zone, in the southern midlatitudes
(308–558S), it is also preferred, though less strongly so,
while to the north of the zone, in the Northern Hemi-
sphere Tropics (308–108N) it remains a possibility at
low confidence, even though a no-trend model has the
advantage of a slightly lower BIC. These belts together
cover about two-thirds of the earth’s surface.

Farther north, in the midlatitude and high-latitude
belts above 308N, the choice of optimum model fully
switches to the no trend 1 nonstationary residual model,
ARIMA(3, 1, 1). However, there is a significant amount
of unmodeled prediction error for all the model options
for these belts, as indicated by the high BIC values,
especially for the 708–558N belt, and if a trend model
is assumed, the estimated trend coefficients (Table 2)
are relatively large (0.07 and 0.138C decade21). In this
situation, we therefore cannot assume that the absence
of detectability means that a trend does not exist in these
latitude belts. A trend, if present, may be masked by
the significant natural variability that the existing trend
models cannot properly represent.

It should be noted that, for these two northern belt
series, if the residual model is restricted to the traditional
ARMA(p, q) family (e.g., Zheng et al. 1997), a trend
model would be selected by the BIC procedure and the
95% confidence interval would not include zero; that
is, a trend would be ‘‘detected.’’ However, under the
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FIG. 4. Spectral density for differenced series for 708–558N.
Smoothed periodogram with 80% confidence interval estimates (solid
lines), ARIMA(3, 1, 1) model (dashed), and AR(4) [5ARIMA(4, 1,
1) with u1 5 21] model (dotted).

weaker restriction on residual models that we use here,
a completely different conclusion is derived.

It is of interest that the northern parts of the Northern
Hemisphere are marked by greater variability (Fig. 2).
Using singular spectral decomposition, Schlesinger and
Ramankutty (1994) identified a low-frequency oscilla-
tion of period around 65–70 yr that is particularly strong
at these latitudes, especially in the North Atlantic and
North America zones, but is relatively weak in the Trop-
ics and the Southern Hemisphere. They concluded that
the oscillation arises from internal variability of the
ocean–atmosphere system, rather than anthropogenic
causes. The pattern is also apparent in the most recent
IPCC summary of regional variations (Karl 1998). The
preference for the no trend 1 ARIMA(p, 1, q) model
may be associated with this variability feature.

As a further diagnostic of why the trend 1
ARMA(p, q) model is not preferred for the 708–558N
belt, spectral analysis was applied to the differenced
series and to the model options [Eq. (19)]. As expected,
the differencing removes the 65–70-yr oscillation and
the series shows near-zero power at low frequencies
(Fig. 4). Over the low-frequency range 1/66 # l #
1/15, the spectrum for the no trend 1 ARIMA(3, 1, 1)
model coincides very well with the (near zero) smoothed
periodogram, but the spectrum for the trend 1
ARMA(4, 0) model lies above at the 20% significance
level. Thus it appears that the trend 1 ARMA(p, q)
model cannot model the small but crucial low-frequency
natural variability in the differenced series as well as
the no trend 1 ARIMA(3, 1, 1) model can.

A broad conclusion from the results for the latitudinal
belts is that there is more than one category of statistical
process present. A trend process is clearly evident in
the tropical belts and Southern Hemisphere midlati-
tudes, while other processes that interfere in trend de-

tection are present only at high latitudes, especially in
the Northern Hemisphere. The uncertain result for the
low-latitude Northern Hemisphere belt (308–108N) is
likely to be due to the presence there of both processes.
This leads to the idea that the main hemispheric and
global series will comprise a mixture of processes that
may not be well represented by a single structural time
series.

On this basis, the NT and NLT series will require a
mixture of an ARIMA(3, 1, 1) process and a trend 1
SOI 1 AR(1) process, which is the probable reason that
both the optimal trend model and the no-trend model
are illposed and no significant trend is detectable. How-
ever, the Southern Hemisphere counterparts, ST and
SLT, which are dominated by the trend process, are not
illposed and exhibit clear trends. The oceanic OT series
is similarly dominated by the Southern Hemisphere and
the trend process, and none of its models are illposed.
The complete GT series contains a greater proportion
of higher-latitude regions than the OT series, but the
tropical and Southern Hemispheric part still dominates
the mixture and allows a trend model to be fitted. The
quality of fit of a model is thus related to the relative
‘‘purity’’ of the mixture of processes present. This in-
dicates that the selection of regions for analysis is im-
portant for developing good structural time series mod-
els. The major regional series in Karl (1998) indicates
that there may be significant variations within each lat-
itudinal belt.

The linear trend coefficients are reasonably similar
for all of the series, being about 10.04 to 10.058C
decade21 (Table 2). The geographical pattern of the mag-
nitudes of the trends is broadly consistent with GCM
greenhouse warming predictions (Kattenberg et al.
1996), being generally greater for the higher latitudes
and lower for the Tropics and oceans. The intrinsic de-
tectability of the temperature trends, however, is op-
posite to this latitudinal variation, being best in the Trop-
ics and poorest in high latitudes. This indicates that
particular attention needs to be paid to the tropical and
subtropical regions in trend detection studies. Methods
of global trend pattern detection that seek to maximize
the signal to noise ratio globally have been described
(Santer et al. 1996; Hasselmann 1997; Hegerl et al.
1997).

A similar conclusion does not arise for the relative
detectability of trends for continents, where trends are
predicted to be greater, versus lower-trend oceans. The
distributions and higher proportion of land and asso-
ciated land–ocean interactions presumably play a key
role in the different results we find for the Northern
Hemisphere, especially at higher latitudes, but the rel-
atively higher natural variability of temperature series
for land areas (see Fig. 1) has little part in the detect-
ability of trends, which is judged on the BIC advantage
of the trend model over the no-trend model. For ex-
ample, the BICs of the SLT models are much higher
than those for the ST model, but in each case the BIC
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advantage of the trend model is essentially the same, at
about 3.6.

We conclude that for a large part of the globe a linear
trend is detected with good confidence, and that in the
high northern latitudes, where trend cannot be detected
by fitting a structural time series model, the existence
of trend cannot be ruled out. The results depend on the
assumption that the true residual model is either
ARMA(p, q) or ARIMA(p, 1, q) with no near-unity root
of (14), but this is a weaker constraint than previously
assumed and it leads to more robust conclusions. While
our study does not directly address the problem of at-
tribution, it does reinforce the view that the globe is
subject to a temperature forcing factor that is global in
extent, is likely to continue, and is consistent with green-
house warming predictions.
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APPENDIX

Yale–Walker Equations

The Yale–Walker equations for {U(t), t 5 0, . . . , T}
with autoregressive coefficients {f 1, . . . , f p}, moving-
average coefficients {u1, . . . , uq}, and innovation var-
iance s 2 (Brockwell and Davis 1996) are

U(t) 2 f U(t 2 1) 2 · · · 2 f U(t 2 p)1 p

25 s u c , 0 # t , max(p, q 1 1)O s s2t
t#s#q

U(t) 2 f U(t 2 1) 2 · · · 2 f U(t 2 p)1 p

5 0, t $ max(p, q 1 1),

where coefficients {cs} are the solution of the following
equations:

c 2 f c 5 u , 0 # t , max(p, q 1 1)Ot s t2s t
0,s#t

c 2 f c 5 0, t $ max(p, q 1 1).Ot s t2s
0,s#p
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