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ABSTRACT

A new technique has been developed for the identification of inhomogeneities in Canadian temperature series.
The objective is to identify two types of inhomogeneities—nonclimatic steps and trends—in the series of a
candidate station in the absence of prior knowledge of the time of site changes and to properly estimate their
position in time and their magnitude. This new technique is based on the application of four linear regression
models in order to determine whether the tested series is homogeneous, if there is a nonclimatic trend, a step,
or trends before and/or after a step. The dependent variable is the series of the candidate station and the
independent variables are the series of some neighboring stations. Additional independent variables are used to
describe and measure steps and trends existing in the tested series but not in the neighboring series. After the
application of each model, the residuals are analyzed in order to determine the fit of the model. If there is
significant autocorrelation in the residuals, nonidentified inhomogeneities are suspected in the tested series and
a different model is applied to the datasets. A model is finally accepted when the residuals are considered to
be random variables. The description of the technique is presented along with some evaluation of its ability to
identify inhomogeneities. Results are illustrated through the provision of an example of its application to archived
temperature datasets.

1. Introduction

Reliable climatological time series are essential for
the analysis of climate trends, climate variability, and
for the detection of anthropogenic climate change. Re-
search scientists have assembled climate datasets in or-
der to attempt to identify regional, hemispheric, and
global climate change (International Panel on Climate
Change 1992). It is well known that most of the long-
term climate datasets contain variations due to noncli-
matic factors such as site relocations, urbanization, and
many others. These nonclimatic factors often create in-
homogeneities of various magnitudes and at different
positions in time. Using datasets that are not adjusted
for these nonclimatic variations can seriously affect the
correct assessment of climate trends and variability, as
well as interfere with the identification of any real cli-
mate change signal. Therefore, it becomes important to
develop and improve techniques to properly identify and
adjust for nonclimatic variations.

Preliminary homogeneity assessment of Canadian
temperature series has indicated that most common
types of inhomogeneities are nonclimatic steps and
trends (Gullett et al. 1991). Steps are abrupt changes in
the mean level and they are usually caused by relocation
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of the station, replacement of the instruments in use, or
by some alteration in observing procedures. Trends are
gradual increasing or decreasing changes over time, and
they are usually associated with a cumulative natural or
human-induced phenomenon such as the growth of the
surrounding vegetation or the urbanization of the nearby
area. The major causes of inhomogeneities in climato-
logical series are well documented (Gullett et al. 1990;
Karl and Williams 1987; Jones et al. 1986). Correction
for small steps when in fact a trend exists in the series
may lead to inappropriate climate representation.

Station history reports are maintained for each ob-
serving site. They are files detailing important infor-
mation such as site location, instruments in use, height
of instruments above the ground, and other pertinent
characteristics of the observing practices. Some of these
are available to some extent in digital form. Most are
still available as paper copy only, especially for the
earlier periods of time (Gullett et al. 1991). Such reports
can be useful for the identification of inhomogeneities
but they are frequently lacking essential information and
they may not routinely document all causes of inhom-
ogeneities. A technique that identifies the date of an
inhomogeneity without knowing a priori the real time
of a change at the station and that properly estimates
the magnitude of the identified change is highly desir-
able.

A new technique for the identification of inhomo-
geneities in Canadian temperature series is presented.
It has been developed with the following objectives.
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First, homogeneous and inhomogeneous intervals of
time are identified in order to focus the search for in-
homogeneities and to determine periods of time that can
be used without alteration. Second, nonclimatic steps
and trends are detected separately with a proper estimate
of their position in time, magnitude, and statistical sig-
nificance. Finally, the most probable time of occurrence
of the inhomogeneity is identified in the absence of prior
knowledge of the real time of change at the station in
order to minimize the dependency on station history
files. Considerable testing on simulated series shows
that these objectives are met to a large extent; however,
further testing is still required to fully determine the
limitations of this new technique.

2. Background

In the literature, a number of techniques are described
to detect inhomogeneities in climatological datasets
(Easterling and Peterson 1995; Gullett et al. 1991; Sney-
ers 1989; Karl and Williams 1987; Alexandersson 1986;
Jones et al. 1986; Mitchell 1961). Most of the techniques
are based on the comparison of a candidate series with
some reference series, and patterns are identified in the
relationships between the series. However, objectives
and identification processes vary from one technique to
another. As an example, Jones et al. (1986) use a visual
technique to identify the major inhomogeneities, and
corrections are intended to be general adjustments only,
suitable for continental or hemispheric-scale studies but
not necessarily sufficient for local-scale studies. On the
other hand, Karl and Williams (1987) use the station
history reports to identify all potential discontinuities.
This is a laborious procedure for the detection of in-
homogeneities and frequently these reports do not pro-
vide sufficient information for the proper identification
of all nonclimatic changes; ultimately, however, more
local-scale climate change characteristics can be inves-
tigated using Karl’s series.

An approach for homogeneity assessment of temper-
ature series was previously investigated (Gullett et al.
1990) and an initial procedure based on multiple-phase
regression models was developed (Vincent 1990). Re-
gression models were used to identify multiple change-
points in the tested series, corresponding to potential
inhomogeneities, and the F test was used to determine
whether the changes were statistically significant. It was
applied to test the homogeneity of the maximum and
minimum temperature series of over 350 Canadian sta-
tions and the results are presented in Gullett et al.
(1991). At the time, the objective was to assess only
the homogeneity of the series; precision regarding lo-
cation and magnitude of each inhomogeneity was not
essential since data adjustments were not performed.

Another methodology for detecting undocumented
discontinuities in climatological time series was recently
presented by Easterling and Peterson (1995). Their main
objective was to develop a methodology for application

to global climate datasets that do not have adequate
station history information for most stations. It is based
on regression models with the difference between the
base and reference series as the dependent variable and
time as the independent variable. A two-phase regres-
sion approach is used to identify the position of the
discontinuity and the significance of the change is es-
tablished using the F test. The series is subdivided at
the potential step and each subsection is then tested
separately. The magnitude of the step is provided by the
difference in the means of the difference series before
and after the potential step, and the significance of each
discontinuity is tested using multiresponse permutation
procedures. Finally, the adjusted series is retested to
verify that there are no more inhomogeneities. Easter-
ling and Peterson have demonstrated that their meth-
odology performed reasonably well (Easterling and Pe-
terson 1995). They have as well indicated that homog-
enized datasets should be used with caution since dif-
ferent methodologies for the identification and
correction of climate datasets could generate different
adjustments and therefore could produce different anal-
yses and results (Easterling et al. 1996).

The technique presented in this report is also based
on the application of regression models. However, it
differs from previous techniques in a number of ways.
First, four regression models are used to identify the
following situations in the tested series: whether it is
homogeneous, if there is a nonclimatic trend, a step, or
trends before and/or after a step. Second, the variables
in the models are different: the dependent variable is
the series of the candidate station and the independent
variables are the series of a number of neighboring sta-
tions. Independent variables are also used to describe
and measure steps and trends in the tested series; there-
fore, the magnitude of each inhomogeneity is provided
by its corresponding estimate parameter. Finally, the
most important difference from previous methods is that
it uses the autocorrelation in the residuals to determine
whether there is any inhomogeneity. Considerable test-
ing of this technique has been done on simulated series,
and recommendations for data adjustment are based on
these results. Ongoing research and development of new
techniques for the assessment and correction of climate
datasets is important and should continue. The need for
reliable climate datasets will increase as the impacts of
present and future climate site automation will become
evident.

3. Description of the technique

The technique consists of the application of four lin-
ear regression models. The first model determines
whether the candidate series, also called the base series,
is homogeneous for the tested interval of time. If it is
homogeneous then the procedure stops and the three
remaining models are not used. Otherwise, the second
model is fitted to the data to establish if there is an
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FIG. 1. Example of the residuals or differences between the values
of a simulated homogenous base series and the fitted values from
model 1. The dashed line represents the mean of the series.

overall trend in the base series. If the inhomogeneity is
not an overall trend, then the third model is applied to
identify a single step change. Finally, it might be nec-
essary to apply the fourth model in order to determine
if there are trends before and after the step, which pro-
vides an indication of multiple inhomogeneities in the
base series. In this case, the series is subdivided at the
position in time of the identified step and each segment
is tested separately starting with the first model.

a. Model 1: Description of a homogeneous series

The following regression model is first considered to
describe the base series:

yi 5 a1 1 c1x1i 1 d1x2i 1 f 1x3i 1 ei

i 5 1, . . . , n. (1)

The dependent variable yi is the temperature at the base
station at time i. The independent variables x1i, x2i, x3i

are the temperatures of three reference series at time i.
The reference series are usually the temperature at some
neighboring stations. Since the number of neighbors
varies from one base to another, the number of inde-
pendent variables corresponding to the reference series
varies from one situation to another. The reference series
can also be a computed series derived from a number
of stations such as the mean or the median of the neigh-
boring series. In any case, the reference series should
reflect as much as possible temperature variations only.
In Canada, mostly in the northern part of the country,
there is a large number of stations that can be considered
isolated, with very few (perhaps two to four) distant
neighbors to use for homogeneity testing (Gullett et al.
1991). For illustrative purposes only, three reference
series are used in the equations presented in this report.

The parameters a1, c1, d1, f 1 are estimated using the
least squares method. The residuals ei are the differences
between the values of the base series and the fitted val-
ues given by the model. The common assumption is that
the residuals are independent, normal, random variables
with mean zero and constant variance s 2 when the mod-
el describes correctly the data. However, since annual
mean temperatures are often slightly correlated in time
(see section 4), it is expected to have small serial cor-
relation in the residuals. This problem is addressed in
section 5a.

An informal way to evaluate the aptness of the model,
or in other words to check if the model provides ade-
quate description of the data, is to examine visually the
graph of the residuals (Neter et al. 1985). When the
residuals fluctuate in a random pattern around the zero
line, the model is appropriate for the data, and in this
case, the base is considered homogeneous (Fig. 1). On
the other hand, if for a certain period of time they appear
to be all on one side of the line and then all on the other
side, the graph indicates the poor fit of the model. This
change of pattern in the residuals can be associated with

an inhomogeneity at the base series. When such a sit-
uation occurs, it generates significant correlation be-
tween successive residual values, which is also called
autocorrelation in the residuals.

The Durbin–Watson test has been developed to de-
termine the statistical significance of the autocorrelation
of lag one in the residuals, which is the correlation
between residuals one distance apart (Neter et al. 1985;
Draper and Smith 1981). The random error terms fol-
lowing a first-order autoregressive process are given as
follows:

ei 5 rei21 1 ui i 5 1, . . . , n,

where |r| , 1 and ui are independent N(0, s 2). The
usual test alternatives considered are H0: r 5 0 versus
Ha: r . 0. The Durbin–Watson D statistic is calculated
as follows:

n

2(e 2 e )O i i21
i52D 5 .n

2eO i
i51

Lower and upper bounds, d1 and du, were obtained such
as a value of D outside of these bounds leads to a definite
decision: if D . du, conclude H0; if D , d1, conclude
Ha; if d1 # D # du, the test is inconclusive.

Inhomogeneities in the base series generate as well
autocorrelation for residuals being several distances
apart. An approach to determine the statistical signifi-
cance of the autocorrelation at different lags has been
suggested by Chatfield (1984). The autocorrelation co-
efficient at lag k is computed as follows:

n2k

(e 2 e)(e 2 e)O i i1k
i51r 5 ,k n

2(e 2 e)O i
i51
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FIG. 2. Example of the residuals or differences between the values
of a simulated base series with an overall trend and the fitted values
from model 1. The dashed line represents the best-fit linear trend.

FIG. 3. Example of the residuals or differences between the values
of a simulated base series with a step and the fitted values from model
1. The dashed line represents the mean of each segment.

where e is the residuals’ average for n observations, r0

5 1, and |rk| , 1 for k . 0. The correlogram, which is
the graph of the autocorrelation rk against lag k, is ob-
tained with its approximate 95% confidence interval
given by 62n21/2. Values of rk outside the confidence
interval are significantly different from zero at the 5%
level. Consecutive significant values of rk identified at
low lags provide an indication of potential inhomoge-
neities in the base series.

The results provided by the Durbin–Watson test and
by the correlogram are used in the following way. If
there is no significant autocorrelation in the residuals,
then the current model describes adequately the series.
In this case, model 1 is accepted and the base series is
homogeneous for the tested period of time. However, if
there is significant autocorrelation in the residuals, then
a different model is applied in order to identify the
inhomogeneities in the base series.

b. Model 2: Description of a trend

When there is an overall trend in the base series,
which does not occur in the reference series, the graph
of the residuals after the application of model 1 shows
a gradual change from one side of the zero line to the
other (Fig. 2). To explain this gradual change, a variable
representing a trend is introduced in model 1. The ad-
dition of this new independent variable forms a second
model, which is given as follows:

yi 5 a2 1 b2i 1 c2x1i 1 d2x2i 1 f 2x3i 1 ei

i 5 1, . . . , n. (2)

The independent variable i takes successively the values
1 to n. It represents a position in time such as, for
example, the first year, the second year, and up to the
n year when annual values are used as variables. The
parameter b2 represents the slope of the regression line
over time. The Durbin–Watson test and the correlogram

are used to determine the significance of the autocor-
relation in the residuals. If model 2 adequately describes
the series, the significance of the trend is established
using the common t statistic. The procedure stops and
there is no need for further analysis. However, if there
is significant autocorrelation in the residuals, consid-
eration is given to the application of a different model.

c. Model 3: Description of a step

When a step occurs in the base series but not in the
reference series, the graph of the residuals against time
shows an abrupt change of level (Fig. 3). To describe
the step in the base series, an independent variable, I,
is introduced in model 1 instead of the variable, i, rep-
resenting the trend. This new model is then written as
follows:

yi 5 a3 1 b3I 1 c3x1i 1 d3x2i 1 f 3x3i 1 ei

i 5 1, . . . , n. (3)

The parameter b3 provides the magnitude of the step.
The independent variable I takes the following values:

I 5 0 for i 5 4, . . . , p 2 1,

I 5 1 for i 5 p, . . . , n 2 3.

The value p is the position in time of a potential step
change and it is called a changepoint. In theory, the
changepoint p can take any value between and including
1 and n. However, in practice it is necessary to have
some information before and after the step to correctly
determine its position and magnitude. It is arbitrarily
decided that the value of p will range from position 4
to n 2 3, leaving three positions at the beginning and
at the end of the series. The ability of the technique to
properly identify a step at any position in time is dis-
cussed in section 5b.

Since the position of the step is unknown a priori, it
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FIG. 4. Example of the residuals or differences between the values
of a simulated base series with trends before and after a step and the
fitted values from model 1. The dashed line represents the best-fit
linear trend of each segment.

is necessary to establish a procedure to identify the
changepoint p. The approach consists of finding the val-
ue p that provides the minimum residual sum of squares
for model 3. This idea came from a paper on climate
change testing (Solow 1987) in which a test for detecting
a change in the behavior of an annual temperature series
based on a two-phase regression model is presented.
This approach was as well used in our previous ho-
mogeneity assessment (Gullett et al. 1991; Vincent
1990). Model 3 is fitted to the datasets successively for
p equal to 4 to n 2 3. This procedure produces in this
manner a sequence of residual sum of squares (RSS)
values. The minimum RSS indicates the model with the
best fit and the corresponding estimated changepoint p,
as denoted by p̂1, represents the most probable position
in time of the step in the base series.

The significance of the autocorrelation in the residuals
is established by the Durbin–Watson test and the cor-
relogram. When there is a step in the base series, the
variable I describes the change in the mean level. The
estimated parameter b3 gives the magnitude of the step
and the usual t statistic is used to determine its statistical
significance. On the other hand, if the autocorrelation
is still significant, it is most likely that there is more
than one inhomogeneity in the base series. Model 4 is
then used in an attempt to better explain the pattern in
the series of residuals.

To specifically test the null hypothesis of no change,
model 1 is compared with a model describing a change,
such as model 3, using the F test (Vincent 1990; Neter
et al. 1985). When models 1 and 3 are fitted to the
datasets, the residual sum of squares RSS1 and RSS3
are obtained, respectively. The hypothesis H0: there is
no change versus H1: there is a change at p̂1 considered.
The F statistic is calculated as follows:

(RSS1 2 RSS3)/(DF1 2 DF3)
F* 5 ,

RSS3/DF3

which, when H0 holds, follows approximately the F
distribution with DF3 2 DF1 and DF3 degrees of free-
dom. DF1 is equal to n 2 4 since four parameters are
estimated in model 1 while DF3 is n 2 5 because five
parameters are estimated in model 3. Using a risk of
type I error a, the decision rule is to reject H0 if F* .
F(1 2 a; 1, n 2 5).

d. Model 4: Description of trends before and after a
step

To identify additional inhomogeneities in the base
series, model 4 is fitted to the datasets. The model de-
scribes the following pattern: a trend from the beginning
of the series to a changepoint, a potential change of
level, and a second trend from the changepoint to the
end of the series (Fig. 4). This model is described as
follows:

y 5 a 1 b iI 1 a I 1 b iI 1 c x 1 d xi 4 4 1 5 2 5 2 4 1i 4 2i

1 f x 1 e i 5 1, . . . , n4 3i i

I 5 1 and I 5 0 for i 5 4, . . . , p 2 11 2

I 5 0 and I 5 1 for i 5 p, . . . , n 2 3. (4)1 2

Model 4 is fitted to the datasets successively for p equal
to 4 to n 2 3. The best fit is determined by the minimum
RSS and the corresponding estimated changepoint p, as
denoted by p̂2, indicates the most probable position in
time of the change.

The Durbin–Watson test and the correlogram are used
once again to determine the significance of the auto-
correlation of the residuals. If there is a change in the
behavior of the trend, including or not a step, then model
4 adequately describes the inhomogeneities in the base
series. The estimated parameters b4 and b5 correspond
to the slopes before and after p̂2, respectively, and the
associated t statistic is used to establish the significance
of each trend. The estimated magnitude of the step at
p̂2, denoted by m̂, is calculated with the following equa-
tion:

m̂ 5 (a4 1 a5 1 b5p̂2) 2 (a4 1 b4( p̂2 2 1)). (5)

If there is still significant autocorrelation after the ap-
plication of model 4, then all inhomogeneities may not
have been correctly identified in the base series. In this
case, the base and reference series are subdivided at p̂2

and each segment is tested separately starting with mod-
el 1.

4. Simulation of annual temperature series

Simulated temperature datasets are used to test the
ability of the technique to correctly identify inhomo-
geneities in a base series and to properly estimate their
position in time as well as their magnitude. To ensure
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that simulated datasets are representative of some cli-
mate characteristics, it was first necessary to investigate
real temperature series at a number of Canadian sites.
The selection of stations was based on spatial coverage,
length of record, and data completeness with missing
values being replaced using a known technique (Thom
1966). Preliminary assessment of annual mean maxi-
mum and minimum temperature datasets indicated that
the selected series were relatively homogeneous over
the chosen period of time (Gullett et al. 1991). Statistical
parameters such as means, standard deviations, auto-
correlations, and linear trends were computed. The au-
tocorrelation of lag one in the annual temperature series
was small ranging from 20.2 to 0.2 with a very few
exceptions at 0.3. This investigation of the real tem-
perature series provided examples of the wide range of
temperatures that are typical across the country, as well
as the variability existing in the annual datasets. A de-
tailed description of the different Canadian climates in-
cluding temperature averages and extremes is presented
in Phillips (1990). The general climatological pattern
provided by the linear trends is in agreement with the
findings of Skinner and Gullett (1993) showing cooling
along the east coast and warming in the western regions
of the country over the last four decades.

The methodology used for the creation of simulated
annual temperatures series has been described by Eas-
terling and Peterson (1992). It produces rough simu-
lations of real temperature series sufficient for identi-
fication of inhomogeneities but not representative of real
climate variations. It has been chosen for comparison
purposes since other techniques have already been tested
using this type of simulated datasets (Easterling and
Peterson 1992). Random numbers normally distributed
with mean 0.0 and standard deviation 1.0 are generated
from an AR(1) model with an autoregressive parameter
equal to 0.1, producing a series of 100 time elements
(or 100 yr). This procedure is repeated four times to
create four simulated series, one for the base and three
for reference. Each reference series is then cross cor-
related with the base series at a coefficient level of 0.70–
0.90 by multiplying the values of the base series by 1.5
and adding them to the values of the reference series.
After this process, each reference series is restandard-
ized. A constant value can be added to every element
of the series to form simulated series of different overall
means, and an increasing small value can be used to
simulate an overall trend. Statistical parameters derived
from a large number of simulated series were in general
agreement with the parameters obtained from the in-
vestigation of the real temperature series.

5. Evaluation of the technique

To evaluate the performance of the technique and to
determine its limitations, it is necessary to test and an-
alyze a large number of simulated series representing a
variety of situations. This section presents the results of

some tests to define the situations in which it performs
the best and to associate a level of confidence to its
performance. Further testing is required for a more com-
plete evaluation of this new technique.

a. Ability to identify a homogeneous series

Since the annual mean maximum and minimum tem-
peratures are slightly correlated in time, it is expected
to have small serial correlation in the residuals. The
following test provides the percentage of times that sig-
nificant autocorrelation is identified in the residuals
when series slightly correlated in time are used as in-
dependent and dependent variables in the model.

Annual temperature series of 100 yr are simulated
following the procedure described in section 4 (with an
autocorrelation of about 0.1). No additional value is
introduced in the base series at this time in order to
simulate a homogeneous series. Correlation coefficients
between the base and references vary from 0.70 to 0.90.
Model 1 is fitted to the datasets and the Durbin–Watson
test is applied to determine the statistical significance
of the autocorrelation of lag one in the residuals. This
process is repeated 1000 times. Results show that 13.6%
of the time, the technique detects significant autocor-
relation when no inhomogeneity is introduced in the
base series. This suggests that 13.6% of the time, the
null hypothesis of no change in the base series is rejected
when in fact it is true (type I error). In these cases,
models 2 and 3 are applied to identify the type and
magnitude of the inhomogeneity. Significant steps great-
er than 0.48C, ranging from 0.28C to 0.48C and from
0.08C to 0.28C are found in 1.2%, 3.3%, and 6.1% of
the series, respectively; no significant step or trend is
identified in 3.0% of the base series even if the auto-
correlation of lag one is significant.

b. Ability to identify the position and magnitude of a
step

A single step is introduced in the base series by adding
a constant value to each element of the series for a
specific interval of time. Ten positions have been se-
lected as starting dates for the step, and in all cases, the
ending date is the end of the series. They were chosen
to further cover the beginning and the end of the series
since it is expected that the technique would have more
difficulty to correctly identify an inhomogeneity located
near one of the extremities of the series. The magnitude
varies from about one-quarter to twice the standard de-
viation imposed in each series. It is expected that smaller
steps would be more difficult to identify than larger
ones. Over all, a total of 80 situations are analyzed (10
positions by eight magnitudes). Each situation is tested
separately 1000 times and each time a new set of sim-
ulated series is used. Results are summarized for the
first five positions, since positions and results were
found symmetrical.
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TABLE 1. Percentage of simulated base series with the date of the
step identified correctly, and identified correctly within two positions,
for various positions and magnitudes of a step.

Magnitude

Position in time

5 10 15 20 35

a. Date identified correctly
2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25

99.3
97.9
95.5
89.6
78.8
59.4
35.4
12.6

98.8
98.4
94.4
91.0
79.0
64.5
37.1
11.5

99.9
98.7
96.3
88.7
79.9
63.8
36.8
12.4

99.3
97.3
96.2
90.5
78.1
60.7
40.0
11.5

99.2
97.5
95.7
90.0
80.9
63.4
38.5
12.6

b. Date identified correctly to within two positions
2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25

99.9
99.9
99.4
99.0
95.8
85.5
64.8
27.8

99.9
99.9
99.9
99.5
97.0
92.4
69.9
31.6

99.9
99.9
99.9
99.4
98.1
92.0
72.6
33.7

99.9
99.9
99.9
99.5
97.1
91.5
74.6
34.8

99.9
99.9
99.9
99.6
97.7
91.9
75.2
34.7

TABLE 2. Percentage of simulated base series with the magnitude
of the step identified correctly to within 0.18C, and within 0.28C, for
various positions and magnitudes of a step.

Magnitude

Position in time

5 10 15 20 35

a. Magnitude identified correctly to within 0.18C
2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25

38.5
37.2
36.1
37.9
37.6
33.5
29.7
35.6

52.4
49.8
53.2
51.8
51.4
49.9
49.8
44.4

61.8
63.3
63.0
61.8
59.6
61.7
56.4
53.4

68.5
67.7
65.7
67.9
66.4
68.3
66.8
61.4

75.5
75.2
74.0
75.1
78.0
73.8
76.7
66.5

b. Magnitude identified correctly to within 0.28C
2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25

67.7
68.2
65.4
69.8
64.7
61.0
55.8
53.9

84.7
83.1
84.4
85.6
83.6
82.5
83.0
66.1

91.5
92.5
91.1
90.2
92.0
91.2
88.2
78.0

94.6
95.2
95.3
93.9
95.1
95.5
92.3
85.4

97.8
98.3
97.6
98.0
98.5
97.9
98.5
92.5

To measure the similarity between the series before
the application of the technique, correlation coefficients
are calculated from the first difference series (Peterson
and Easterling 1994). The first difference series is the
series of the differences between each element of the
series and its previous value. It is a special type of filter
for removing steps and linear trends in a time series
(Box and Jenkins 1976). In these simulations, the cor-
relation coefficients on the first difference series be-
tween base and reference stations range from 0.70 to
0.90.

Table 1 presents the percentage of simulated base
series with the date of the step identified correctly, and
identified correctly to within two positions (or years),
respectively. The results of Table 1a show that the tech-
nique correctly identifies the date of a step of magni-
tudes ranging from 1.258 to 2.008C almost every time
(88.7%–99.9%) at all positions. The correct date of a
step of 0.758 and 1.008C is identified most of the time
(59.4%–80.9%), and the correct date of a step of 0.258
and 0.508C are not frequently identified. Table 1b shows
that the technique identifies correctly to within 2 yr the
date of a step of 0.758–2.008C almost every time
(85.5%–99.9%). The correct date of a step of 0.508C is
frequently identified within 2 yr (64.8%–75.2%), and a
step of 0.258C is not identified very often. Contrary to
expectation, the technique does not have much more
difficulty to retrieve the date near the extremities of the
series.

In Table 2, the percentage of simulated base series
with the magnitude of the step identified correctly to
within 0.18C and to within 0.28C is presented. The re-
sults show that the technique has more difficulty to iden-
tify the correct magnitude of the step as its position gets
closer to one of the extremities. In Table 2a, when the

step is located near the middle of the series, such as for
positions 35 (or 65), its magnitude within 0.18C is fre-
quently identified (66.5%–78.0%). In Table 2b, the mag-
nitude of the step to within 0.28C is correctly identified
almost all the time (83.0%–98.5%) for magnitudes rang-
ing from 0.508 to 2.008C and for positions ranging from
10 to 90.

From these results, it is concluded that when the first
difference series are cross correlated at a coefficient
level between 0.70 and 0.90, the technique correctly
identifies, at least 82.5% of the time, the date of the
step within 2 yr, and the magnitude of the step within
0.28C, for positions ranging from 10 to 90, and mag-
nitudes ranging from 0.758 to 2.008C. The position and
magnitude of steps of 0.508C are frequently identified,
and the position of steps of 0.258C is not correctly iden-
tified very often.

c. Remarks

Various techniques for detecting and adjusting for
artificial discontinuities in climatological time series
were presented by Easterling and Peterson (1995, 1992).
One of their objectives was to evaluate and compare the
ability of different techniques to properly identify the
year of a discontinuity. Rigorous comparison between
other techniques and ours is not presented here. Results
from testing simulated datasets show that steps equal to
or greater than 1.08C are well identified by all tech-
niques. This finding is not surprising since the standard
deviation of all simulated series is about 1.0, references
are well correlated with the base, and steps of 1.08C are
relatively large under these conditions. However, all
techniques have much more difficulty to correctly iden-
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FIG. 5. Annual mean maximum temperatures for Collegeville,
1916–95. The dashed line represents the best-fit linear trend.

tify steps of 0.58C; therefore, caution should be used
when adjusting steps of that magnitude.

Inhomogeneities in the reference series can obscure
the proper identification of inhomogeneities in the base
series. Preliminary testing on simulated series revealed
that this technique identifies correctly the position of
the step in the base even if steps are introduced in one
or more reference series; however, as the steps in the
reference series get larger, the magnitude of the iden-
tified step in the base becomes incorrect. In application
to real climate datasets, this problem is minimized by
examining the graphs of the differences between the
base and the reference series. By comparing station
pairs, inhomogeneities belonging to the base and those
associated with the neighboring series become apparent
(Jones et al. 1986). Therefore, it is possible either to
correct large inhomogeneities in neighboring series be-
fore testing the base or to discard neighboring series
that appear to have too many problems. To eliminate
the impact of inhomogeneities in reference series, Pe-
terson and Easterling (1994) have developed a meth-
odology to create a representative climate reference se-
ries; however, this method was not considered in the
present study.

Trends occurring in the base series and not in the
reference series can also be detected by this technique.
Preliminary testing on simulated series indicates that
the beginning date and the magnitude of a trend are
correctly identified when a step occurs at the beginning
of the trend. Changepoints associated only with a change
in magnitude or direction of a trend are not always
detected. In application, it is often difficult to retrieve
from the station history files the cause of a human-
induced trend. Further testing is required to fully de-
termine the ability of the technique to identify noncli-
matic trends. As well, for a more complete evaluation
of this technique, further tests are needed, for example,
to determine the joint statistical significance when mul-
tiple inhomogeneities are identified in the base series.
However, even if the precise size of the tests are un-
known, the objectives of this technique are served none-
theless.

6. Example of application to real datasets

A procedure for homogeneity assessment and data
correction of real climatological series is established.
The major tasks involve the selection of high quality
and climatically representative neighboring stations, es-
timation of missing values, detection and measurement
of inhomogeneities, identification of the causes of the
inhomogeneities through investigation of station history
files, correction of datasets, and evaluation of the ad-
justed series with respect to its neighbors. The technique
has addressed a number of these tasks and an approach
for homogeneity assessment and data adjustment of real
climate datasets is now presented.

The annual mean maximum temperatures of College-

ville, Nova Scotia, are tested for homogeneity for the
period 1916–95. This station was selected for its long-
term program of observations, its high quality data, and
its few gaps of missing values; as well, a sufficient
number of neighboring stations were available for the
full period of time for homogeneity testing. Its station
history file also contains detailed information, which
could be helpful for the verification of the cause of the
identified inhomogeneities. The annual mean maximum
temperature series is presented in Fig. 5: it shows a
decreasing linear trend over the tested interval of time.

Neighboring stations are carefully selected to repre-
sent as much as possible the climate of the area. Distance
from the tested site, elevation, landscape features, veg-
etation, and amount of missing data are considered.
Since the technique requires a similar interval of time
for the base and neighboring series, length of record is
often a prime factor of selection. Missing monthly val-
ues are estimated using a known technique (Thom
1966), which has been used in previous work (Gullett
et al. 1991; Gullett et al. 1990). Four stations are initially
chosen as potential candidates. Correlations computed
from the first difference series indicate that the climate
patterns presented by the series without inhomogeneities
are similar, since all coefficients are greater than 0.70.
However, correlations on the annual values, ranging
from 0.45 to 0.65, reveal disagreements between some
of the series and suggest potential inhomogeneities ei-
ther at the base or neighboring sites. To assess the suit-
ability of each neighboring series, graphs of the differ-
ences between the annual values of the base and each
neighbor are produced. In this example, there is one
neighbor with a large step near the beginning of its
record and it is rejected from the analysis. Based on
correlations and graphs, three neighbors are finally cho-
sen for testing the homogeneity of Collegeville.

Model 1 is first fitted to the series for the period 1916–
95. The autocorrelation in the residuals are significantly
different from zero at several consecutive low lags (Fig.
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FIG. 6. Autocorrelations of the residuals at different lags after fitting
model 1 to the annual mean maximum temperatures of Collegeville,
1916–95. The dashed lines represent the approximate 95% confidence
interval.

FIG. 7. Residuals obtained from fitting model 1 to the annual mean
maximum temperatures of Collegeville, 1916–95. The dashed line
represents the mean of each segment.

FIG. 8. Autocorrelations of the residuals at different lags after fitting
model 1 to the adjusted annual mean maximum temperatures of Col-
legeville, 1916–95. The dashed lines represent the approximate 95%
confidence interval.

6), and it is concluded that the base is not homogeneous
for the tested period of time. The graph of the residuals
against time confirms this result (Fig. 7). Model 3 iden-
tifies a decreasing step of 1.38C in 1952 while model 4
identifies a decreasing step of 1.68C in 1952 with an
increasing trend from 1916 to 1951. When this first
interval is tested, an increasing step of 0.68C is identified
in 1936 by both models 3 and 4. The interval 1952–95
is homogeneous since the autocorrelation in the resid-
uals is not significant after fitting model 1 to the cor-
responding period of time.

Before adjusting the base series, it is preferable to
establish if the identified inhomogeneities are real and
correctable. In theory, all nonclimatic steps should be
corrected regardless of their magnitudes. However, in
practice, techniques have more difficulty to correctly
identify small steps. This new technique is reliable to
identify steps of 0.758C and above while steps of 0.508C
are frequently identified and steps of 0.258C are not
identified very often. Considering these results, the fol-
lowing rules are applied for adjusting real climate da-
tasets: steps of about 0.758C and above are always cor-
rected, steps of about 0.508C are corrected only if it is
possible to determine their cause using the station his-
tory files, and steps of about 0.258C and under are not
corrected. Investigation of the station history reports for
Collegeville revealed a change in observer and a small
site relocation in 1936. Written comments from the in-
spector indicated that the maximum temperatures were
too high after 1936. A second change in observer took
place at the beginning of the 1950s with a site relocation
of about 10 km north of the previous site. The inspector
subsequently reported that the new data had little in
common with the data from the former sites.

Adjustments are applied to bring each segment into
agreement with the most recent homogeneous part of
the series. First, segment 1936–51 is adjusted to segment

1952–95 by adding a mean value of about 21.6 to the
annual values of segment 1936–51. A different correc-
tion factor is computed for each of the 12 months. To
accomplish this, model 3 is applied to the series of the
January values for the period 1936–95, to estimate the
magnitude of adjustment in 1952. This is repeated for
the 11 other series of monthly values in order to obtain
12 monthly correction factors, their average producing
a correction of 21.6 for the annual values in 1952. Then,
segment 1916–35 is adjusted to the corrected segment
1936–95 by adding a mean value of 21.0 to the annual
values of segment 1916–35. The adjusted series is re-
tested for homogeneity: the autocorrelation in the re-
siduals are not significantly different from zero after
fitting model 1 (Fig. 8), and it is concluded that the
adjusted dataset is homogeneous. The graph of the re-
siduals against time confirms this result (Fig. 9). To
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FIG. 9. Residuals obtained from fitting model 1 to the adjusted
annual mean maximum temperatures of Collegeville, 1916–95. The
dashed line represents the mean of the series.

FIG. 10. Adjusted annual mean maximum temperatures for College-
ville, 1916–95. The dashed line represents the best-fit linear trend.

validate the adjusted series, the mean, standard deviation
and linear trend are obtained at the base and the three
neighboring sites for comparison purposes. The adjusted
series of Collegeville shows a slight positive linear trend
over the tested interval of time (Fig. 10). Increasing
linear trends of about this magnitude are as well ob-
served in the neighboring series. It is concluded that the
adjusted series of Collegeville reflects more closely the
climate variation observed in the area.

7. Conclusions

A new technique for the identification of inhomo-
geneities in Canadian temperature series has been pre-
sented. Its general approach is quite different from other
techniques commonly used for homogeneity assessment
since it uses the autocorrelation in the residuals to de-
termine whether there are inhomogeneities in the tested
series. At first, it considers the entire period of time and
then it systematically divides the series into homoge-
neous segments. Each segment is defined by some
changepoints, and each changepoint corresponds to ei-
ther an abrupt change in mean level or a change in the
behavior of the trend. The station history files can be
used, when available, to determine the cause of the in-
homogeneities. Application of this technique to other
climate elements, such as for total precipitation, may be
possible; however, a proper investigation of the time
series of the element is first required to facilitate the
interpretation of the results.

A number of objectives were established to enhance
the application of this technique to climatological da-
tasets. It has been shown that it identifies homogeneous
and inhomogeneous intervals of time. This feature is
useful for focusing the search for inhomogeneities and
for determining reliable segments that can be used with-
out alteration. The technique also identifies and mea-
sures two types of inhomogeneities: steps and trends.

Results have shown that when base and reference series
are reasonably well correlated, the technique identifies
the date within 2 yr and the magnitude within 0.28C of
steps of magnitude 0.758C and larger. Steps of 0.58C
are frequently identified and steps of 0.258C are not
identified very often. Preliminary results also show that
the beginning date and the magnitude of a trend are
identified when a step occurs at the beginning of the
trend; however, further testing is required to fully assess
the ability of the technique to identify nonclimatic
trends. The most probable date of a change is detected
by fitting regression models for a sequence of potential
changepoints, and the one providing the minimum RSS
value becomes the estimated date of the inhomogeneity.
It has been shown that this approach is quite reliable
and it also minimizes the use of the station history files
since they are used only for the verification of the cause
of the inhomogeneities and not for the actual identifi-
cation process.

Future work will involve the application of this new
technique to assess and correct Canadian temperature
datasets in order to create a new version of a Canadian
historical climate database. Homogeneity assessment
and correction of inhomogeneities are essential to iden-
tify or to produce datasets that are reliable for climate
change studies; however, inappropriate adjustment can
lead to erroneous conclusions. Verification of the cli-
matic representation of each ‘‘new’’ adjusted series thus
becomes crucial to the success of the operation.
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