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ABSTRACT: Identifying and separating the signal of urbanization effects in current temperature data series is essential for

accurately detecting, attributing, and projecting mean and extreme temperature change on varied spatial scales. This paper

proposes a new method based on machine learning to classify the observational stations into rural stations and urban

stations. Based on the classification of rural and urban stations, the global and regional land annual mean and extreme

temperature indices series over 1951–2018 for all stations and rural stations were calculated, and the urbanization effects

and the urbanization contribution of global land annual mean and extreme temperature indices series are quantitatively

evaluated using the difference series between all stations and the rural stations. The results showed that the global land

annual mean time series for mean temperature and most extreme temperature indices experienced statistically significant

urbanization effects. The urbanization effects in the mean and extreme temperature indices series generally occurred after

the mid-1980s, and there were significant differences of themagnitudes of urbanization effects among different regions. The

urbanization effect on the trends of annual mean and extreme temperature indices series in East Asia is generally the

strongest, which is consistent with the rapidly urbanization process in the region over the past decades, but it is generally

small in Europe during the recent decades.
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1. Introduction

Climate change has a significant impact on natural and human

systems (Handmer et al. 2012). Mean and extreme temperature

indices (temperature indices hereafter) are important indicators

in monitoring and detecting climate change. However, many

regions in the world have experienced a rapid urbanization

process in the past decades to century, which has led to the in-

creasing of urban areas and the strengthening of the urban heat

island (UHI) effect in urban areas or suburbs. Many of the land

observational stations are located in the urban areas or the

suburbs because of the expansion of the cities. However, urban

areas accounted for only 0.39% of global land areas based on a

global land-use/land-cover (LULC) product in the year 2018

(Hollmann et al. 2013). Therefore, the instrument surface air

temperature data may have a systematic bias caused by urbani-

zation around the observational sites in many regions over the

past decades to century, and yet they are used to analyze re-

gional- to global-scale changes in climate (Peterson 2003; Kalnay

and Cai 2003; Zhou et al. 2004; Ren et al. 2008; Parker 2010;

Hansen et al. 2001, 1999, 2010; Tysa et al. 2019). Identifying and

separating the signal of urbanization effects in the current

temperature data series is essential for accurately detecting, at-

tributing, and projecting mean and extreme temperature change

on varied spatial scales (Ren and Zhou 2014).

In the past decades, many global and regional efforts have

been involved in the study of urbanization effects on the

mean temperature series, and most of them have shown that

the urbanization effects indisputably exist in the currently

observed temperature series (Karl et al. 1988; Peterson et al.

1999; Kalnay and Cai 2003; Zhou et al. 2004; Ren et al. 2008;

Fujibe 2009; Yan et al. 2010; Hu et al. 2010; Ren and Ren

2011; Yang et al. 2011; Das et al. 2011; Tysa et al. 2019; Wen

et al. 2019). The question is to what extent the urbanization

signal exists in the global and regional mean temperature

series. At the global scale, the IPCC Fifth Assessment Report

argued that the uncorrected urbanization influences con-

tribute no more than 10% to the centennial global land

averaged temperature trends (Hartmann et al. 2013); at the

regional scale, most research effort was focused on China,

with the estimated urbanization effects somehow different

because of the distinct methods, datasets, study areas, and

study periods used (Ren et al. 2008; Ren and Ren 2011;

Hu et al. 2010; Yang et al. 2011; Yan et al. 2010), in spite of

the fact that most studies applying sophisticated methods to

determine reference stations showed a large and significant

urbanization contribution to the estimated warming trends

(Tysa et al. 2019; Wen et al. 2019).

Meanwhile, there are only a few single station or regional

studies of urbanization effects on extreme temperature changes,

mostly conducted for China’s mainland (e.g., L. Zhang et al.
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2011; Zhou and Ren 2011; Li et al. 2014; Ren and Zhou 2014;

Bian et al. 2015; Yang et al. 2017; Sun et al. 2019; Zhao et al.

2019). The studies showed that the urbanization effect on the

extreme temperature change could not be neglected. Ren and

Zhou (2014) made a comprehensive investigation of the urban-

ization effect in the country-averaged extreme temperature in-

dices series for China’s mainland, and found a significant

urbanization contribution (from 5.7% to 58.1%) to the estimates

of their trends in the last decades. Yang et al. (2017) showed that

the urbanization impact on extreme hot events change in the

urban agglomeration of east China is even comparable to the

impact from greenhouse gases.

How to select the representative rural stations as reference

sites is a key to the studies of urbanization effect on trends of

surface air temperature series (Ren et al. 2008). There are

several methods to select rural or reference stations. They

include 1) methods based on the population in residential

sites where the station is located (Karl et al. 1988; Peterson

et al. 1999; Ren et al. 2008); 2) methods based on artificial

nighttime illumination as measured by satellites or land

surface temperature data around the stations (Peterson et al.

1999; Hansen et al. 2001; Peterson 2003; Hansen et al. 2010;

Ren and Ren 2011); 3) methods developed using LULC data

derived from satellite remote sensing (Gallo et al. 1996;

Kalnay and Cai 2003; He et al. 2007; Ge et al. 2007; Wang and

Ge 2012; Patra et al. 2018; Tysa et al. 2019); and 4) a com-

prehensive procedure that considers the numbers and dis-

tance of relocation, station density, population around the

city or towns, percentage of urban areas, and the straight

distance between the stations and the center of the cities or

towns (Ren and Zhou 2014; Ren et al. 2015). These methods

have been confirmed to be effective and applicable in regions

like China’s mainland and the United States.

Despite its importance, few works, if any, have been con-

ducted so far to investigate the urbanization effect on trend

estimates of extreme temperature change on a spatial scale

larger than subcontinental outside China’s mainland, mainly

due to the difficulty of obtaining a reliable dataset of rural

stations. Most of the abovementioned procedures for deter-

mining rural stations are not workable on global land scale

due to the lack of detailed metadata, the incompatibility of

the data, and the time-consuming nature of the task. It is thus

not clear to what extent urbanization has exerted an impact

on the currently estimated linear trends of temperature indices

series on global land or a region large enough for a robust

detection of extreme climate change, such as those reported in

many previous works including Alexander et al. (2006), Donat

et al. (2013a,b), Zhang et al. (2019), Dunn et al. (2020), Klein

Tank and Können (2003), Peterson et al. (2008), Trewin (2001),

and Vincent and Mekis (2006).

The main objective of this paper is to apply a new machine

learning method called ‘‘isolation forest’’ (Liu et al. 2008) to

select rural stations as reference stations, and to assess the

urbanization effect on surface air mean and extreme temper-

ature indices change on global land scale. We describe the data

and method in section 2. The results are presented in section 3,

and a brief discussion of the results is provided in section 4. The

conclusions are summarized in section 5.

2. Data and methods

a. Data sources

Three types of datasets were used in this study. They are the

daily maximum and minimum surface air temperature data-

sets, the locations (longitude and latitude) of the U.S. Climate

Reference Network (USCRN) dataset (Diamond et al. 2013),

and the global LULC dataset (Hollmann et al. 2013). The daily

surface air temperature datasets are used to calculate tem-

perature indices, the locations of USCRN are used as a training

dataset in machine learning, and the LULC dataset is used to

estimate the percentage of urban areas around the stations at

different buffer radii.

1) DAILY SURFACE AIR TEMPERATURE DATASETS

Several international or national daily surface air tempera-

ture datasets were collected and then integrated to form a new

global land daily surface air temperature dataset in this study.

The sources of datasets are 1) the Global Historical Climatology

Network-Daily (GHCND) dataset (Menne et al. 2012a,b); 2) the

homogenized datasets of European Climate Assessment and

Dataset (ECA&D) (Squintu et al. 2019) and forAustralia (Trewin

et al. 2020), Canada (Vincent et al. 2012), and China’s mainland

(Cao et al. 2016); and 3) the three national datasets (for South

Korea, Russia, and Vietnam) that were exchanged with China

MeteorologicalAdministration (Xu et al. 2014; Zhang et al. 2019).

Details of the dataset sources are presented in Table 1.

It should be noted that although the uncorrected urbaniza-

tion effects at most stations manifest as gradual changes, at

some stations they maymanifest as step changes, and the series

of these stations would be identified as inhomogeneous and be

adjusted by the homogenization procedure (Menne et al. 2009;

Trewin 2013). It is possible that some part of the urbanization

effect signal in the homogenized datasets used in this studymay

have already been removed by homogenization.

In forming the new dataset, the GHCND (Menne et al.

2012a,b) was used as a benchmark to integrate other datasets.

The datasets for the ECA&D, Australia, Canada, and China’s

mainland in the GHCND (Menne et al. 2012a,b) were di-

rectly replaced by the corresponding homogenized datasets of

ECA&D (Squintu et al. 2019), Australia (Trewin et al. 2020),

Canada (Vincent et al. 2012), and China’s mainland (Cao et al.

2016). When the exchanged (SouthKorea, Russia, andVietnam)

datasets (Xu et al. 2014; Zhang et al. 2019) were integrated, there

was a need to check whether there were duplicated stations be-

tween GHCND and the exchanged stations. The stations are

regarded as duplicated stations if the differences of latitude and

longitude between the stations of two sources are less than 0.018.
In this case, the stations with longer series are retained. When

integrating datasets, only the stations with at least 10 years of data

in the reference period (1961–90) were retained, and a total of

14 004 stations were retained in the end.

Although the quality control of many original datasets had

been conducted, after these datasets were integrated into a new

global dataset a renewed quality control was conducted. The

main purpose of the quality control is to identify possible er-

roneous data. It mainly includes an internal consistency check,

an outlier check, a local climatological extreme value check,
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and a check on whether the record exceeds the world record.

The details of the quality control procedure are same as de-

scribed in the study of Zhang et al. (2019). After quality con-

trol, 13 956 stations with at least 10 years of non-missing values

during 1961–90 were selected. If the missing values reach more

than 15 days in a year, the annual value of this year is regarded

as a missing value.

After that, the inhomogeneity test for the datasets that hadnot

been homogenized was performed using the RHtests V4 soft-

ware (Wang 2008a,b; Wang and Feng 2013) without a reference

series. The use of a reference series is preferable if it is available;

however, it is always difficult to find enough homogeneous ref-

erence series in combination withmetadata, and it is also a labor-

intensive task, which prevents the method (reference series

based RHtests V4) from being applied to global-scale datasets

(Wang and Feng 2013). For global datasets, themetadata are not

always easily available; even if the metadata are available, they

are often incomplete (Trewin 2013). Meanwhile, if the inhomo-

geneity test was carried out using reference series, such amethod

may also have difficulty in handing network-wide changes, such

as a national change in instrument type or observing time (e.g.,

the instrument automation of the China’s observational stations,

which mainly occurred during 2003–05).

Themonthly mean temperature series was used to detect the

changepoints because the daily temperature series has higher

noise and thus it is more difficult to detect inhomogeneities

(Wang and Feng 2013). If the breakpoints were detected at the

99.99% confidence level, the station data series were excluded

in the subsequent analysis. The 99.99% confidence level was

adopted so that only the most significant inhomogeneous data

series would be identified. Similarly, the inhomogeneity test

conducted in this research may also detect the step changes

caused by urbanization for certain stations, and these series

affected by urbanization effect could be excluded in the above

procedure analysis. A total of 1451 stations were identified as

inhomogeneous and were discarded. In the end, 12 505 stations

were retained for use in this study.

2) USCRN DATASET

The U.S. National Oceanic and Atmospheric Administration

(NOAA)/National Climatic Data Center (NCDC) developed

the USCRN dataset (Diamond et al. 2013), which has 234

stations across the United States. The series length of USCRN

stations is no more than 20 years, and it is not enough to assess

any long-term climate change. Therefore, only the location

information (longitude and latitude) of theUSCRN stationswas

used to fit the model for selecting rural stations from the global

land temperature stations in the abovementioned dataset.

3) LULC DATASET

TheEuropean SpaceAgency (ESA) Climate Change Initiative

(CCI) Land Cover project developed a satellite-based global

LULC product at 300-m spatial resolution from 1992 to 2018

(Hollmann et al. 2013), which makes it possible to select rural

stations free from urbanization effects on the global scale. This

dataset contains 38 LULC typologies including urban areas,

cropland, tree cover, grassland, bare areas,water bodies, and so on;

therefore, it can be determined whether the observational settings

of the stations are affected by urbanization based on the percent-

age of urban areas around the stations at the different spatial scales

(Tysa et al. 2019). We only used the global LULC product in the

latest year of 2018 corresponding the study period of 1951–2018.

b. Selection of rural reference stations

The USCRN data are free subject to LULC change, and can

be used in the future to assess climate change precisely

(Diamond et al. 2013). In particular, the locations of USCRN

stations were carefully selected with a strict criterion and were

placed in rural environments that are away from urban areas,

and thus they can be regarded as typical rural stations that are

not affected by urbanization. The rural environment was ex-

pected to be free of the impact of urbanization for at least 50

years. Our goal was to select some rural stations from the

global land temperature stations as reference stations, and the

current LULC around the selected rural stations should be

similar to that of the USCRN stations.

The problem of dividing global land stations into rural sta-

tions and urban stations can be regarded as a binary classi-

fication problem in machine learning. The traditional binary

classification paradigm of machine learning, including logistic

regression, random forest, and support vectormachinemethods,

aimed to classify an unknown dataset into two categories based

on a known training dataset comprising the positive and nega-

tive instances (Khan and Madden 2010). However, only the

information of positive instances of the training dataset [i.e., the

rural stations (USCRN)] was available in this study; the infor-

mation of negative instances (i.e., the stations that were affected

by urbanization) was not available. The urban stations may be

affected by urbanization to varying degrees (e.g., slightly,

somewhat, or highly), and so they are not likely to conform to a

TABLE 1. Summary of dataset sources.

Source Name/nation Homogenized No. of stations Reference

Global GHCND No 28 334 Menne et al. (2012a,b)

Regional ECA&D Yes 2495 Squintu et al. (2019)

National China’s mainland Yes 2419 Cao et al. (2016)

Australia Yes 112 Trewin et al. (2020)

Canada Yes 338 Vincent et al. (2012)

Russia No 88 Xu et al. (2014); Zhang et al. (2019)

South Korea No 70 Xu et al. (2014); Zhang et al. (2019)

Vietnam No 22 Xu et al. (2014); Zhang et al. (2019)
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statistically representative profile; therefore the urban stations

can be regarded as anomalies or outliers. In this case, we

needed amethod to decide whether a new instance (from global

land stations) belongs to the same distribution as existing in-

stances (i.e., USCRN stations).

Since only one information categorywas available, the problem

of selecting rural stations can be regarded as the problem of one-

class classification (OCC) inmachine learning (Khan andMadden

2010), and the OCC can be applied to the anomaly detection

theme (Chandola et al. 2009; Khan and Madden 2014). The

anomaly detection included novelty detection and outlier detec-

tion; in the context of novelty detection, the training dataset was

not contaminated by anomalies or novelties; and in the outlier

detection context, the training dataset was partly contaminated by

anomalies or outliers (Pedregosa et al. 2011; Scikit-learn devel-

opers 2019). Figure 1a shows the percentage of urban areas around

FIG. 1. The percentage of urban areas around the (a) USCRN stations and (b) all global land stations at 1–12-km (1-km increment)

buffer radii, respectively. The terms r1–r12 on the x-axis labels refer to buffer radii of 1–12 km (1-km increment), respectively. The figure

was originally presented as a scatterplot; the x axis of each of the 12 panels represents the ordinal of the points, and there are so many

points that they obscure each other. To avoid overlapping points, the data (points) are binned into hexagons for display. The color bar

shows the station counts in a hexagon.
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the 234 USCRN stations at each of the 1–12-km (1-km incre-

ment) buffer radii, as proposed in Tysa et al. (2019). As can be

seen, the percentages of urban areas were very small for most

stations, but relatively large for a few stations, which can be

regarded as anomalies/outliers. The outliers indicate that the

USCRN stations may be contaminated to some extent (i.e., a

few USCRN stations had been actually affected by urbaniza-

tion). Therefore, the method of outlier detection was adopted

for this study.

One new efficient algorithm referred to as ‘‘isolation forest’’

(Liu et al. 2008) was employed for performing the outlier de-

tection. This algorithm detects anomalies/outliers only based

on the concept of isolation instead of employing the distance or

density measure of the existing methods, and it tries to fit the

regions of which the high-density regions of the training

dataset, ignoring the low-density regions (anomalies/outliers)

of the training instances (Liu et al. 2008; Scikit-learn devel-

opers 2019). The experiment showed that this algorithm out-

performs most existing anomaly detection approaches in

performance (Liu et al. 2012). The algorithm was implemented

using an object ‘‘ensemble.IsolationForest’’ of the Python

module ‘‘Scikit-learn’’1 (Pedregosa et al. 2011) in this study.

The specific steps of selecting rural stations from the global

land stations based on the LULC dataset and USCRN adopt-

ing the isolation forest algorithm (Liu et al. 2008) were sum-

marized as follows:

1) Calculate the percentage of urban areas around the sta-

tions. It is well known that the percentage of urban areas

around the station is a key indicator to decide whether or to

what extent a station is affected by urbanization (Ren et al.

2015; Li et al. 2019; Tysa et al. 2019). However, what buffer

radius should be used to calculate the percentage of urban

areas remains a question.

Referring to Ren et al. (2015) and Tysa et al. (2019), the

percentages of urban areas around the 243 USCRN stations

and 12 505 global land stations at each of the 1–12-km (1-km

increment) buffer radii were calculated respectively based on

the ESA CCI LULC product in the year of 2018 (Hollmann

et al. 2013) using the R package raster (Hijmans 2020). If the

distance between the grid cell center and the station location

was less than or equal to the buffer radius, then the grid cell was

included in this buffer radius extent. The percentages of urban

areas of USCRN stations are shown in Fig. 1a, and the per-

centages of urban areas of all the global land stations are shown

in Fig. 1b. Thus, each station used 12 dimensions to depict how

much the observational site was affected by urbanization. The

percentages of urban areas around the USCRN stations at

1–12-km buffer radii were used as the training dataset (a 2433
12 matrix) to fit the model with an unsupervised way, and then

the model was applied to predict whether a new instance from

the global land stations belongs to the most densely distribu-

tion of the training dataset (it is an inlier, i.e., a rural station), or

the new instance should be considered as an outlier (i.e., an

urban station).

2) Select an appropriate contamination parameter to fit the

model. As shown in Fig. 1a, there were a few anomalies/

outliers in the USCRN dataset (i.e., the USCRN dataset was

contaminated). Therefore, a key issue was to determine the

appropriate contamination parameter in fitting the model by

using the contaminated training dataset (USCRN).

First, we randomly sampled 70%USCRN dataset (a 1703
12 matrix) as training dataset to fit the model, and the re-

mainder 30% was used as test dataset (a 70 3 12 matrix) to

test the predict result. Second, the contamination parameter

was set to 0–0.5 (0.05 increment), respectively. The experi-

ment result is shown in Fig. 2a. As can be seen, the outlier

rates (the rate of urban stations) of the training dataset and

test dataset are similar, so the USCRN dataset can be used to

fit the model. Then we used the full USCRN dataset as the

training dataset to fit the model, and the contamination pa-

rameter was similarly set to 0–0.5. The new instances (global

land stations) were sorted as inliers (rural stations) or out-

liers (urban stations) with the learned model from the

training dataset. As the contamination value increased, the

number of sorted rural stations decreased (see Fig. 2b).When

the contamination parameter reached 0.3, the numbers of

FIG. 2. (a) The outlier rates for each contamination parameter.

Blue indicates the training dataset, which was sampled 70% from

the USCRN dataset; red indicates the test dataset, which was the

remaining 30% dataset of the USCRN. (b) The number of sorted

global rural stations and urban stations based on the fitted model

learned from the full USCRN dataset with a different contamina-

tion parameter.

1 The version of ‘‘Scikit-learn’’ used in this study is 0.23.0, which

requires Python version 3.6 or higher.

1 MARCH 2021 ZHANG ET AL . 1927

Brought to you by China University of Geosciences | Unauthenticated | Downloaded 03/09/21 05:08 AM UTC



classified global rural stations and urban stations were 3444

and 9061, respectively. The corresponding percentages of

urban areas around the stations at 1–12-km buffer radii are

shown in Fig. 3. Most of the percentages of urban areas

around the classified global land rural stations were less than

3%, which is consistent with what we had known about the

rural stations. Therefore, 0.3 was adopted as the final con-

tamination parameter. Other parameters in the object

‘‘ensemble.IsolationForest’’ of the Python module ‘‘Scikit-

learn’’ (Pedregosa et al. 2011) were determined using the

default parameters settings.

Obviously, simply defining rural stations as the observa-

tional sites that have less than a specified percentage (e.g., 5%

or 3%) of urban areas within 12 km (or the other buffer radius)

may be still feasible, but determining this percentage threshold

is somewhat subjective and arbitrary. In addition, for a region-

scale research, artificially selecting rural stations based on the

site selection criteria of USCRN is also feasible, but for global-

scale dataset, the artificial selection is a labor-intensive task

and difficult to complete. The method applied in this research

not only refers to the procedures and results of artificial se-

lection in the USCRN, but also realizes the semi-automation,

FIG. 3. As in Fig. 1, but for the (a) global land rural stations and (b) global land urban stations at 1–12-km buffer radii, respectively.
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which can be further generalized and potentially applicable in

the relative research.

Another problem is the resolution of each station’s latitude

and longitude (coordinates). The dataset used in this study

comes from different sources with different spatial resolution.

The station coordinates of China’s mainland (Cao et al. 2016)

are stored in whole degrees and minutes, which is equivalent

to a resolution of 0.0168 (10/600) when converted to decimal

degrees. The station coordinates of ECA (Squintu et al. 2019)

are stored in degrees, minutes, and seconds, which is equivalent

to a resolution of 0.00038 (100/360000) when converted to decimal

degrees. The resolution of the stations coordinates of Australia

(Trewin et al. 2020) and Canada (Vincent et al. 2012) are 0.018.
Although the resolution of coordinates in the GHCND are

rounded to 0.00018, it is actually an integrated dataset, and its

original data accuracy cannot be equal to 0.00018. Coordinate
accuracywithin 0.018will be accurate to about 1 km, whichmeans

that the percentage of urban areaswithin a 1-kmbuffer radiuswill

be unreliable for some stations. However, considering that the

coordinate resolution of some stations is higher than 0.018, and
the urban LULCwithin the 1-km buffer radius of the stations has

an important influence on the temperature series, the percentage

of urban areas within 1 km was still used for each station in this

research.

Finally, 3444 stations with a percentage of urban areas

similar to the USCRN stations were classified as rural stations,

while the other 9061 stations affected by urbanization to

varying degrees were classified as urban stations. Figure 4

presents examples of stations defined as urban or rural stations

in Beijing. It shows that the stations located in or near urban

areas can be correctly defined as urban stations, but the

Thanghekou and Zhaitang stations, which are actually located

in rural areas, have been determined as urban stations because

of the strict criteria used and the insufficient resolution of the

stations’ coordinates. In this way, the last classified rural sta-

tions are likely to be real rural stations, but a few of the clas-

sified urban stations are actually also rural stations. This might

not be a big problem for the averaged series of regional or

FIG. 4. (a) Overlaymap of LULC (spatial resolution of 300m3 300m) and stations classification in Beijing. Also

shown are (b) Thanghekou, (c) Xiayunling, and (d) Zhaitang, the three stations in the Beijing region. The light-

green background represents ‘‘rural’’ areas, and the yellow background and grids are ‘‘urban’’ areas. Black dots and

red dots indicate the stations classified as rural and urban stations, respectively. The original LULC product

contains 38 LULC typologies, such as urban areas, cropland, tree cover, grassland, bare areas, and water bodies. All

LULC typologies except urban areas were reclassified as rural areas here.

1 MARCH 2021 ZHANG ET AL . 1929

Brought to you by China University of Geosciences | Unauthenticated | Downloaded 03/09/21 05:08 AM UTC



global scales, but for local scales (i.e., grid) the impact could be

relatively large, because a few so-called urban stations and

rural stations in the same grid are probably not much different.

The distribution maps of all stations and rural stations are

shown in Fig. 5. As indicated in Fig. 5, the selected rural sta-

tions had a sufficient global spatial coverage to allow com-

parison with all of the global land stations. The annual station

numbers of Australia, East Asia, Europe, North America, and

global land for all stations and rural stations are shown in Fig. 6.

Relatively fewer stations were classified as rural stations in

East Asia, and there were larger numbers of rural stations in

Europe and North America. The number of stations available

in the early and late stages of the study period is relatively

small, especially in East Asia, and the insufficient station

coverage could increase the uncertainty of trend estimates.

c. Analysis methods

The annual average value of daily maximum temperature

(Tmax), annual average value of daily minimum tempera-

ture (Tmin), and annual average value of daily mean tem-

perature (Tmean; the daily mean temperature is the mean of

daily maximum and minimum temperature), and some of the

ETCCDI (Expert Team on Climate Change Detection and

Indices) indices (X. Zhang et al. 2011), including cold nights

(TN10p), cold days (TX10p), warm nights (TN90p), warm days

(TX90p), yearly maximum value of daily maximum temperature

(TXx), yearly maximum value of daily minimum tempera-

ture (TNx), yearly minimum value of daily maximum tem-

perature (TXn), yearly minimum value of daily minimum

temperature (TNn), and diurnal temperature range (DTR), were

used in this study. The ETCCDI indices were calculated based

on the R language package ‘‘climdex.pcic’’ (Bronaugh 2020).

The stations used in this research are not evenly distributed

across the global land, which would result in the global signal

be dominated by the regions of higher station density if a

simple arithmetic mean were used. Thinning the station net-

work so that there are approximately evenly distributed sta-

tions in each region is an alternative method, used by Frich

et al. (2002). However, this approach also discards a lot of

useful climate data, and the choice of which stations to keep or

discard is also somewhat subjective (Alexander et al. 2006).

Therefore, we gridded the stations’ temperature indices anomaly

series (relative to 1961–90) into a regular latitude–longitude grid

(58 3 58) first, and then applying the grid area-weighted average

method to obtain the global/regional average time series for all

stations and rural stations, as Jones and Hulme (1996) proposed.

The specific details are consistent with the study of Zhang et al.

(2019). In this way, the impact caused by the uneven station dis-

tribution could be partly alleviated. It should be noted, however,

that the values for each grid boxeswere calculated by averaging all

stations within the grid boxes, but only the grid boxes with at least

one urban and one rural station were retained. Meanwhile, the

grid difference series between all stations and rural stations for

each grid were also calculated. When calculating the linear trends

of the grid boxes, only the grid boxes with at least 66% of data

series during 1951–2018 and the last year of the data series not

earlier 2005were used;when calculating the global average annual

time series, only the grid boxes with at least 90% temporal com-

pleteness of data series during 1951–2018 were used.

A total of 229 grid boxes are available, which accounts for

about 26% of the global land grid boxes (and about 32% of the

global land area), and each grid box has at least 66% of data

series during the research period and the last year of the data

series is not earlier than 2005. Since 2014, however, the number

of available global land grids has decreased significantly.

The urbanization effect (DTall–rural) refers to the impact of

urbanization on the estimated trends of temperature indices

anomaly series for stations, grid boxes, and regional average

(Ren et al. 2008; Ren and Zhou 2014); it is also defined here as

the linear trend of temperature indices anomaly difference

series between all stations and rural stations. Consider Yall and

Yrural as the time series for all stations and rural stations, re-

spectively. The temperature indices anomaly difference series

Yd can be expressed as

Y
d
5Y

all
2Y

rural
, (1)

Y
d
5 a1b

d
t
i
1v

i
, i5 1,2,. . . ,n, (2)

where a refers to the intercept, bd refers to the linear trend of

the anomaly difference series (i.e., the urbanization effect),

v refers to the regression residual, and t refers to the ordinal

time. The term bd 3 10 (i.e., the changing trend per decade)

was actually adopted in this study.

Many temperature indices series do not follow a normal

distribution (Zhang et al. 2019) and theremay be outliers at the

beginning and end of the series. Therefore, the nonparameter

Theil–Sen trend estimator (Sen 1968) and Mann–Kendall test

(Mann 1945; Kendall 1955), which are less affected by non-

normal distribution and outliers in the series (Zhang et al. 2000),

were adopted in this study. Meanwhile, lag-1 autocorrelation

FIG. 5. The station distribution of each region for (a) all stations

and (b) rural stations. Different colors refer to the different re-

gions. The extent of East Asia is defined as 38–508N, 908–1508E, as
shown in the rectangular box. The numbers in parentheses in the

legend indicate the number of all stations (left value) and rural

stations (right value) for each region.
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usually existed in most temperature index series (Zhang et al.

2019), which makes it easier to obtain a statistically significant

trend (von Storch and Navarra 1999, 15–18). Therefore, an itera-

tive prewhitening procedure described in appendixAofWang and

Swail (2001) was used to diminish the effect of lag-1 series auto-

correlation when calculating the linear trends and testing their

statistical significance. In addition, the correction term for ties

(repetitive values in the time series) was included in calculating the

variance S of the Mann–Kendall test (Qian et al. 2019).

The urbanization contribution (Uc) was defined as the per-

centage of the urbanization effect accounting for the overall

trends of all stations (Ren et al. 2008; Ren and Zhou 2014),

expressed as

U
c
5 jb

d
/b

all
j3 100%, (3)

where ball refers to the linear trend of all stations (including rural

stations and urban stations). The urbanization contribution was

calculated only when the urbanization effect was statistically

significant at the 0.05 level.

In addition to the global land, regional averages of the

temperature indices series and their urbanization effect and

contribution for Australia, East Asia, Europe, and North

America were also calculated for comparison. The four regions

were chosen because of the relatively good data coverage of

both all stations and rural stations. The divisions of the regions

and the distributions of stations in each of them are shown

in Fig. 5.

3. Results

Figure 7a shows the time series of anomalies of TN90p ob-

tained using all stations and rural stations for global land,

Australia, East Asia, Europe, and North America, respec-

tively. As can be seen, the global and regional land averaged

time series for TN90p indices over 1951–2018 all experience

FIG. 6. The station numbers for all stations and rural stations of Australia, East Asia, Europe, North America, and

global land.
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increasing trends regardless of whether the series are calcu-

lated from all stations or from rural stations only. At first

glance, similar temporal variability and long trends are ob-

served in series for all stations as well as rural stations, although

the number of rural stations only accounts for 27.5% of the

number of all stations and has less spatial coverage. However, a

careful inspection of the global/regional time series anomalies

of TN90p over 1951–2018 reveals that the increase in all sta-

tions was larger than for just for the rural stations. Since the

magnitude of difference between the all-stations series and

FIG. 7. The global/regional land average annual anomalies (relative to the mean of 1961–90) over 1951–2018 for

the warm nights (TN90p) index. (a) The all-stations series and rural-stations series for (top to bottom) global land,

Australia, East Asia, Europe, andNorthAmerica, respectively. (b) The difference series of annual mean anomalies

between all stations and rural stations for (top to bottom) global land, Australia, East Asia, Europe, and North

America, respectively. The global/regional average series were calculated using only those grid cells whose series

completeness exceeds 90% during 1951–2018. The black straight lines in the bar chart of (b) are the fitted

trend lines.
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rural-stations series is relatively small, the difference series

between all stations and rural stations for global land and the

four regions are computed, as shown in Fig. 7b.

A clear trend of the difference series (i.e., an urbanization

effect) was observed in TN90p indices for global land,

Australia, East Asia, and North America, which indicates

that warm nights at urban stations occurred more frequently

than in rural areas (Fig. 7b). The urbanization effect mainly

occurred after the mid-1980s, which is consistent with the

world urbanization process. Global land and North America,

which have a relatively large number of stations, show a clear

and stable (low fluctuation) urbanization signal since the

mid-1980s. The most evident signal of urbanization effect

was observed in East Asia, which may be related to the un-

precedentedly rapid process of urbanization in East Asia

(especially in China’s mainland) in recent decades. The sig-

nals of the urbanization effect in Australia and East Asia are

clear, but the temporal fluctuations of the difference series

are larger than those in global land and North America,

which may be related to the available station numbers being

relatively small in these two regions, especially at the be-

ginning of the study period. There are no statistically signif-

icant trends (at the 0.05 level) observed in Europe, which

may be due to the stagnant growth of UHI effects around the

observational stations in recent decades. The studies of Jones

et al. (2008) and Jones and Lister (2009) showed that the UHI

for Vienna and central London might have developed before

the start of the twentieth century; therefore the stations in

Vienna and central London did not show the urban-related

warming trends compared to the nearby rural stations.

However, these results for Vienna and London may not be

fully extrapolated to other cities of Europe. In addition, some

of the defined urban station locations of Europe might have

been less affected by urbanization, which would cause the

difference between defined rural stations and urban stations

to be relatively small in this study.

The original anomaly series and difference series of

TN10p, TX10p, TX90p, TXx, TNx, TXn, and TNn were also

calculated, but they were presented in supporting material

(see Figs. S1–S7 in the online supplemental material) due to

the limited space of this paper. In the TN10p differences

series, only Australia and East Asia experienced a statisti-

cally significant urbanization effect. No statistically signifi-

cant urbanization effect was observed for TX10p in all

regions. For TX90p, North America and global land experi-

enced a slightly urbanization effect associated with urban

warming, but Australia experienced an urbanization effect

associated with urban cooling. On the whole, the warm tem-

perature indices related to the daily minimum temperature

(TN90p) experienced a stronger urbanization effect, while

the cold temperature indices related to the daily maximum

temperature did not experience any significant urbanization

effect in any regions.

Figure 8a shows the Tmax anomalies time series of all sta-

tions and rural stations for global land, Australia, East Asia,

Europe, and North America, respectively. Figure 8b shows the

corresponding difference series between all stations and rural

stations. A slightly weak urban warming signal was detected in

global land and North America, and a strong urban cooling

effect was detected in Australia. The Tmax difference series of

Australia experienced a downward trend; that is, the rural-

stations series is warming faster than the all-stations series,

which is not consistent with other regions.

Figure 9 shows the Tmin time series anomalies of all stations

and rural stations for each region. A strong urbanization effect

can be observed in the East Asia, and a slightly weak urbani-

zation effect can be observed in global land, Australia, and

North America. The urbanization effect mainly occurred after

the mid-1980s, and the temporal evolution characteristics of

Tmin are generally similar to TN90p indices. The anomaly dif-

ference series in Australia and Europe shows large fluctuations,

but no statistically significant trend is detected in Europe.

The DTR difference series witnessed an evident urbaniza-

tion signal for Australia and East Asia (Fig. 10). However, the

causes of the urbanization effect in these two regions are dif-

ferent. In Australia, the DTR anomalies time series showed a

slightly gradual upward trend for all stations and rural stations,

with that of all stations having a smaller positive trend than the

rural station; however, the anomalies series of East Asia

experienced a downward trend for both all stations and rural

stations, with that of all stations having a larger negative trend

than the rural stations. A positive and significant urbanization

effect in the DTR difference series was observed in Europe.

This was mainly caused by the more rapid increase in DTR of

all stations than that of rural stations after the 1980s. A slightly

weak urbanization effect can be found in global land.

The annual mean Tmean of all stations had a statistically

significant urbanization effect in global land, East Asia, and

North America (Fig. 11). The urbanization effect in East Asia

is the strongest, which is consistent with other temperature

indices. On global land, themagnitude of urbanization effect in

the Tmean data series was between those of East Asia and

North America.

The left panel of Fig. 12 shows the spatial distribution of

urbanization effect for the TN10p, TX10p, TN90p, and TX90p

indices, and the right panel of Fig. 12 shows the corresponding

the urbanization effect and urbanization contribution of re-

gional average series.

The urbanization effects in TN10p series of all stations are

generally negative, although they have some insignificant

positive values in some grid cells; the largest urbanization ef-

fects are mainly distributed in East Asia. The urbanization

contribution of the TN10p series in global land and East Asia

reach 7.2% and 13.7%, respectively. The urbanization contri-

butions in other regions were not calculated because the ur-

banization effects are not statistically significant at the 0.05

level. Many statistically significant grid cells can be found in

Europe and North America (Fig. 12a), but the overall urban-

ization effect of the regional average TN10p series in these two

regions are not statistically significant, which may be due to the

offset of the positive and negative value grid cells in different

areas within these regions. For example, southern Europe

mainly shows negative trends, while northern Europe mainly

shows positive trends.

The urbanization effects of TX10p (Fig. 12b) for all re-

gional average series are not significant statistically, so the
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corresponding urbanization contributions were not calcu-

lated. However, a few statistically significant grids are ob-

served in Europe and the United States.

The urbanization effects of TN90p (Fig. 12c) are mostly

positive values, and the largest urbanization effects are mainly

distributed in East Asia and North America. Although the

magnitude of the urbanization effect and urbanization con-

tribution in Australia is largest, the results have great uncer-

tainty because the grid coverage is insufficient in this region.

Europe as a whole shows a negative trend. The urbanization

contributions of global land, Australia, East Asia, and North

America in the TN90p series reach 17.2%, 35.7%, 20%, 7.6%,

and 21.7%, respectively.

For TX90p (Fig. 12d), northern Europe is mainly charac-

terized by positive grid cells, and central Europe has more

negative grid cells. Statistically significant negative values are

observed in the North China Plain, indicating that the urban-

ization effect has reduced the frequency of warm days (TX90p),

which may be related to the more serious air pollution in urban

areas of the North China Plain in the recent three decades as

FIG. 8. As in Fig. 7, but for Tmax (maximum temperature).
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compared to earlier decades (Qian et al. 2003; Zhang et al. 2012).

There are also a few statistically significant negative grids ob-

served in arid region of western China, but this may be related to

the enhanced local oasis effect (Ren and Zhou 2014). In these

regions, there is relatively more vegetation and irrigation in

urban areas than rural areas, the evapotranspiration is relatively

strong, and the urban cold island effect may be formed in par-

ticular during daytime (Su and Hu 1988). Since the positive and

negative valued grid cells in Europe and East Asia cancel each

other out, the overall urbanization effect in these regions is not

statistically significant. The urbanization effects of global land,

Australia, andNorthAmerica are statistically significant, and the

corresponding urbanization contributions are 11.2%, 23.8%, and

16.2%, respectively.

The left panel of Fig. 13 shows the urbanization effects for

Tmax, Tmin, DTR, and Tmean indices, and the right panel of

Fig. 13 shows the corresponding urbanization contributions of

regional average series.

For Tmax (Fig. 13a), only a few grid cells show a statistically

significant urbanization effect. A few negative values in grid

FIG. 9. As in Fig. 7, but for Tmin (minimum temperature).
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cells can be found in the North China Plain, which may also be

related to the excessive anthropogenic emissions of aerosols in

the region. Among the urbanization effects of the regional

annual average series, only global land, Australia, and North

America are statistically significant, and the corresponding

urbanization contributions are 11.1%, 29.9%, and 13.8%, re-

spectively. Meanwhile, the urbanization effects for North

America and the global land are positive values, whereas that

in Australia is a negative value (Fig. 8). However, the urban

cooling effect of Tmax for Australia may not be caused by the

increased aerosol because the aerosol pollution in Australia is

less serious than the Northern Hemispheric average condition

and has been declining in recent decades (Keywood et al.

2016); in addition, there are only a few available gridbox series

for constructing the regional average time series of Australia,

which may cause great uncertainty in the estimation of the

urbanization effects in Australia.

For Tmin (Fig. 13b), East Asia and central Asia show the

strongest urbanization effect. The urbanization effect of re-

gional average series in global land, Australia, East Asia, and

FIG. 10. As in Fig. 7, but for DTR (diurnal temperature range).
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North America are statistically significant, and the corre-

sponding urbanization contributions are 13.9%, 14.7%, 21.7%,

and 6.7%, respectively.

Statistically significant negative grid cells of DTR (Fig. 13c)

are observed in East Asia, central Asia, and North America.

However, the overall urbanization effect in North America

is not statistically significant, which may be because the

positive and negative values offset each other in the region.

The negative urbanization effects in global land, Australia,

and East Asia and the positive urbanization effect in Europe

are statistically significant; the corresponding urbaniza-

tion contributions reach 20.8%, 100%, 47.0%, and 100%,

respectively.

For Tmean (Fig. 13d), the urbanization effect in Europe is

generally small and statistically insignificant. Many statistically

significant grid cells are observed in Asia and North America.

The urbanization effects in global land, East Asia, and North

America as a whole are statistically significant, with the

corresponding urbanization contributions for the period of

1951–2018 are 12.7%, 15%, and 9.1%, respectively. East Asia

FIG. 11. As in Fig. 7, but for Tmean (mean temperature).
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FIG. 12. (left) The trends of grid differences series between all stations and rural stations and (right) the cor-

responding regional average urbanization effects and urbanization contributions of Australia, East Asia, Europe,

NorthAmerica, and global land for (a) TN10p, (b) TX10p, (c) TN90p, and (d) TX90p during 1951–2018. The trends

of grid cells were calculated using only those grid cells whose difference series completeness exceeds 66% during

1951–2018 and the non-missing value of the last year of the series does not occur earlier than 2005, and each grid cell

contains at least one rural station and one urban station. The black points in the grid cells of the trend distribution

map indicate that the trends are statistically significant at the 5% level. The error bars on the bar charts refer to the

95% confidence interval for the urbanization effects. The blue percentage numbers above or below the bar charts

refer to the urbanization contributions. The TN10p andTX10p are cold threshold indices, the positive trends of grid

difference series between all stations and rural stations indicate urban cooling effects, and the negative trends

indicate urban warming effects. Therefore, the color bar of these two indices were inverted so that the warm colors

always represent urban warming and cool colors always represent urban cooling.
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generally registered the largest urbanization contribution in

terms of regional-averaged annual mean temperature trend.

It should be noted that in data-sparse areas, an urbanization

signal (i.e., the statistically significant trends of grid difference

series between all stations and rural stations) may actually be

detecting a spatial gradient in trends. There are a few outliers

in the early research period in East Asia andAustralia, and the

outliers may be caused by the insufficient station coverage in

these regions. But this does not seem to have a significant effect

on the estimated trends because the Theil–Sen trend estimator,

which is less affected by outliers in the series, was adopted in

this study.

FIG. 13. As in Fig. 12, but for (a) Tmax, (b) Tmin, (c) DTR, and (d) Tmean.
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4. Discussion

a. Representativeness of rural stations

In evaluating urbanization effects in the observational data

series, an important issue would be how to select the ‘‘real’’

rural stations or reference stations. In this work, we applied

machine learning method to select the global land rural sta-

tions. This might also be the first time that themachine learning

method has been used to select rural reference stations for

evaluating the impact of urbanization on changes in the surface

climate elements of stations. The isolated forest algorithm (Liu

et al. 2008) belongs to the category of anomaly detection, so it

can only determine whether the detected object and the

learned training dataset belong to the same distribution, and

cannot be used to rank the urbanization influence on stations.

For the purpose of this paper, however, this is enough, because

we only care about the impact of urbanization and the relative

contribution of urbanization to the full change trends.

However, when using the isolated forest algorithm to select

rural stations, there are still two issues to be considered.

The first question is what buffer radius should be used to

calculate the percentage of urban areas around the stations?

Ren and Zhou (2014) and Ren et al. (2015) used a 2-km buffer

radius, but comprehensively considered the distance of relo-

cation and the population of the town or city where the stations

belong, considering that the town or city population is actually

equivalent to increasing the use of a larger buffer radius. If the

buffer radius is too small, there may be a situation where the

station has a small percentage of urban land within the buffer

radius, which meets the standards of rural stations, but the

station may still be affected by an urban heat air dome (Ren

et al. 2015). Fan et al. (2017) used a simple energy balance

model to suggest that the horizontal extent of the urban heat

air dome can reach 1.5–3.5 times the city radius at the night and

2.0–3.3 times at the day. Therefore, the most ideal method is to

select the rural stations according to the actual city radius. If

the station falls outside 3.5 times the city radius, then it can

be considered as meeting the standards of a rural station.

However, there are two difficulties in doing so. One is that the

metadata of the city radius of each city are still difficult to

obtain automatically, and it is also difficult to automatically

determine the location of the city center; another is that some

cities are approximately square or round in shape, but some

cities have a spatial layout along river valleys or coastal lines.

There is no such thing as a city radius if it is distributed in a

band shape.

In addition, if the rural stations are selected strictly according

to location outside 3.5 times the city radius, then there may not

be enough stations for use. According to the LULC dataset

provided by the ESA (Hollmann et al. 2013), for an extreme

example, the radius of urban areas in Beijing in 2018 is about

60 km. If the maximum extent of the urban heat air dome in the

horizontal direction is 3.5 times the city radius, then within

210km from the urban center observational stations may still be

affected by the urban heat air dome. In this rare case, even if the

finally selected rural stations whose percentage of urban areas

around the stations at 1–12-km buffer radius are close to 0, then

on a larger spatial scale, the ‘‘rural stations’’ may still be affected

by the urban heat air dome or heat air plume; that is, our esti-

mated urbanization effect based on these rural reference stations

may still be underestimated.

Tysa et al. (2019) calculated the correlation coefficient be-

tween the percentages of urban areas around the stations at 1–

20 km (1-km increment) buffer radius and the annual mean

temperature trends of period 1960–2015 for 2286 national

stations of China’s mainland, and found that when the buffer

radius reaches 4 km, the correlation coefficient is the largest,

and then the correlation gradually weakens with increase of the

radius, but it more or less stabilizes when it is larger than 16 km,

as shown in Fig. S1 of Tysa et al. (2019). Therefore, the per-

centages of urban areas within the buffer radius of 1–16 km

were used to select the rural stations, and the reciprocal of the

buffer radius is used as the weight when dividing the level of

the stations affected by urbanization. According to Fig. S1 of

Tysa et al. (2019), when the buffer radius reaches 12 km, the

correlation coefficient has not changed evidently. When the

machine learning method is used to fit the model, the higher

the dimension of the feature matrix of the training dataset, the

more likely it is to contain some extraneous redundant infor-

mation, thereby reducing the performance of machine learning

algorithm for prediction or classification. This is called the

‘‘curse of dimensionality.’’ Therefore, we only used the per-

centage of urban areas within a buffer radius of 1–12 km

around the stations to fit the model.

The second issue is how to select an appropriate contami-

nation parameter when using the isolation forest algorithm

(Liu et al. 2008) to fit the model.

Since the establishment of the USCRN, the LULC around a

small number of stations has changed (Diamond et al. 2013),

which leads to the training dataset (USCRN) not being pure, or

being affected by urbanization to a small extent. Figure 1a

shows that the percentages of urban areas around some

USCRN stations have even exceeded 40%. Therefore, when

using the isolated forest algorithm (Liu et al. 2008) to learn the

training dataset, a key is to find an appropriate contamination

parameter. However, this is not an easy problem to solve, be-

cause we are not sure what proportion of USCRN stations are

contaminated (or are affected by urbanization). Determining

this contamination parameter requires repeated experiments.

Finally, when the contamination parameter is set to 0.3, the

percentages of urban areas around the selected global land

rural stations at 1–12-km buffer radius are generally less than

3%, as shown in Fig. 3a. Therefore, a value of 0.3 was adopted

as the final contamination parameter.

The choice of the contamination parameter is somehow

subjective and arbitrary. Obviously, if a larger contamination

value is used, the representativeness of the selected rural sta-

tions will be increased, but the number of the available rural

stations will be decreased (see Fig. 2b). In the case of appli-

cation of a more representative rural station network, the

estimated urbanization effects would be larger than those

presented in this paper. Therefore, as always, the urbanization

effects and contributions contained in the daily temperature

dataset as estimated in this work are conservative.

Data inhomogeneities induced by relocations of stations

and replacement of instrumentations will also affect the
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representativeness of selected rural stations. Knowing that a

station is located in a rural area now does not mean it has

always been there. If the selected rural station was moved

from urban areas to the present rural areas, then the tem-

perature series of the ‘‘rural station’’ would also include the

signal of urbanization effect after the data were homogenized

(Zhang et al. 2014). Therefore, the evaluation of urbaniza-

tion effects would still contain biases, generally under-

estimating the magnitudes of the urbanization contribution

in case of the movement of stations from urban to rural areas.

However, the use of the homogenized dataset can also avoid

biases in other circumstances such as an application of the

carefully selected rural station data series as references in

homogenization (Trewin 2013). Additionally, although we

used some homogenized data and made a new check of the

inhomogeneities, some small breakpoints may still exist in the

current global land daily temperature data. The possible impact

of the remaining inhomogeneities and of the processing proce-

dure to homogenize the data on the selection of the rural stations

and the estimates of urbanization effect and contribution for all

stations needs to be further addressed in the future.

b. Comparison with other studies

As mentioned in the introduction, at present there is no

research of urbanization effect on the global scale about the

ETCCDI indices, and only a few regional studies focusing on

China’s mainland have been conducted so far. These include

the analyses of North China presented inZhou andRen (2011),

China’s mainland presented in Ren and Zhou (2014), and East

China presented in Sun et al. (2019). A comparison of these

studies is provided in Table 2.

The methods, study area, study period, and the dataset used

for these studies are not exactly the same, thus weakening the

comparability of these results. However, the comparison is still

noteworthy. Most of the changes in the ETCCDI extreme in-

dices, especially the nighttime extremes (TN10p and TN90p),

show a relatively large impact of urbanization, but there are

differences in the impact of urbanization among different

studies, whichmay be due to the variedmethods, study periods,

study areas, and datasets used. The research of Zhou and Ren

(2011) and Sun et al. (2019) generally showed the strongest

urbanization effects, which may be related to eastern and

northern China being the fastest-growing areas of urbanization

in China’s mainland.

It is interesting to note that the magnitude of the urbaniza-

tion effect on global land averaged annual mean surface air

temperature (Tmean) change over 1951–2018 in this study is

0.038Cdecade21 and the corresponding urbanization contri-

bution is 12.7%, which is larger than the results reported by the

IPCC Fifth Assessment Report (Hartmann et al. 2013) and by

TABLE 2. Comparison of urbanization effect (Ue) and urbanization contribution (Uc) for different studies. In the research of Zhou and Ren

(2011) and Ren and Zhou (2014), the units ofUe for TN10p, TX10p, TN90p, and TX90p are days decade21 because the units of the indices in

these studies were converted to days from percentages; in the research of this paper and Sun et al. (2019), the units of Ue for TN10p, TX10p,

TN90p, andTX90p are%decade21. The units ofUe for Tmax,Tmin,DTR,Tmean, TXx,TNx,TXn, andTNnare 8Cdecade21. Boldface values

indicate that theUe is significant at the 5% level. ‘‘N/A’’ (not available) indicates that theUcwas not calculated because the correspondingUe is

not significant at the 5% level. A dash (—) indicates that Ue and Uc were not calculated in the study.

This paper (East

Asia, 1951–2018)

Zhou and Ren (2011)

(North China, 1961–2008)

Ren and Zhou (2014)

(China’s mainland, 1961–2008)

Sun et al. (2019) (East

China, 1958–2012)

TN10p Ue 20.21 23.76 21.49 20.52

Uc (%) 13.7 43.7 17.6 30.0

TX10p Ue 20.02 20.36 20.39 20.09

Uc (%) N/A 10.5 12.5 N/A

TN90p Ue 0.44 3.87 2.27 0.82

Uc (%) 20.0 48.0 26.4 40.0

TX90p Ue 0 20.08 0.56 0.01

Uc (%) N/A N/A 10.7 N/A

Tmax Ue 0 — 0.02 —

Uc (%) N/A — 10.1 —

Tmin Ue 0.07 — 0.07 —

Uc (%) 21.7 — 18.4 —

DTR Ue 20.05 — 20.05 —

Uc (%) 47.0 — 31.8 —

Tmean Ue 0.04 — 0.05 —

Uc (%) 15.0 — 15.4 —

TXX Ue 0.01 20.02 0.03

Uc (%) N/A N/A 22.7

TNX Ue 0.05 0.16 0.07

Uc (%) 23.7 61.5 26.1

TXN Ue 0.04 0.02 0.05

Uc (%) N/A N/A 13.6

TNN Ue 0.08 0.31 0.12

Uc (%) N/A 50.8 19.8
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other researchers (Peterson et al. 1999; Hansen et al. 1999,

2010; Parker 2006). It is also noteworthy that the daily tem-

perature data coverage is relatively incomplete compared to

that of the monthly mean temperature datasets, and the study

period is also different, which may obviate a rigorous com-

parison with the previous studies. However, the new estimate

of urbanization effect indicates a need to pay more attention to

the systematic bias in the current analyses of global land and

regional-scale surface air temperature change (Karl et al. 1988;

Peterson et al. 1999; Ren et al. 2008; Hansen et al. 1999, 2010;

Wang and Ge 2012; Jones et al. 2012; Tysa et al. 2019). This

should be especially emphasized when the conservativeness of

the estimate of urbanization effect due to the difficulty to ob-

tain the real rural stations is considered.

5. Conclusions

This paper proposes a method of machine learning (the

‘‘isolation forest’’ algorithm) to classify the observational sta-

tions into rural stations and urban stations. Based on the

classification of rural and urban stations, the global/regional

land annual mean temperature indices series for all stations

and rural stations were calculated, and the urbanization effects

and urbanization contribution of global land and regional an-

nual mean temperature indices series for all stations are

quantitatively evaluated. The main conclusions are summa-

rized as follows:

1) From the global land perspective, statistically significant

urbanization effects were detected for most temperature

indices series, especially for the warm temperature indices

derived from daily minimum temperature, for the period

1951–2018.

2) During the period 1951–2018, the TN10p, TN90p, and TX90p

index series experienced significant urbanization effects,

reaching20.08%, 0.25%, and 0.11%decade21, respectively,

and the urbanization contributions are 7.2%, 17.2%, and

11.2%, respectively; the urbanization effects of Tmax,

Tmin, DTR, and Tmean reach 0.028, 0.038, 20.018, and
0.038Cdecade21, respectively, and the corresponding urban-

ization contributions reach 11.1%, 13.9%, 20.8%, and 12.7%,

respectively; the urbanization effects of TXx, TNx, and TXn

are 0.028, 0.038, and 0.068Cdecade21, respectively, and the

corresponding urbanizations reach 16.5%, 14.9%, and 20.4%.

3) The urbanization effects on trends of global land and

regional average annual mean temperature indices series

generally occurred after the mid-1980s, which is most evi-

dent in the TN90p and Tmin series in East Asia, and to a

lesser extent in North America and Australia.

4) There are significant differences on the urbanization effects

for different regions. The urbanization effect in the tem-

perature indices series of East Asia is the strongest, while

Europe experienced the weakest urbanization effect for the

temperature indices. Within each of the continents, there are

also significant differences. A weaker urbanization effect

signal was found in Europe, probably due to the cancellation

of the positive and negative trends of urban heat island

intensity in the south and north of the region.
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