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Abstract: The surface air temperature lapse rate (SATLR) plays a key role in the hydrological, 
glacial and ecological modeling, the regional downscaling, and the reconstruction of 
high-resolution surface air temperature. However, how to accurately estimate the SATLR in 
the regions with complex terrain and climatic condition has been a great challenge for re-
searchers. The geographically weighted regression (GWR) model was applied in this paper to 
estimate the SATLR in China’s mainland, and then the assessment and validation for the 
GWR model were made. The spatial pattern of regression residuals which was identified by 
Moran’s Index indicated that the GWR model was broadly reasonable for the estimation of 
SATLR. The small mean absolute error (MAE) in all months indicated that the GWR model 
had a strong predictive ability for the surface air temperature. The comparison with previous 
studies for the seasonal mean SATLR further evidenced the accuracy of the estimation. 
Therefore, the GWR method has potential application for estimating the SATLR in a large 
region with complex terrain and climatic condition. 

Keywords: temperature lapse rate; geographically weighted regression; surface air temperature; estimation; 
regression residual 

1  Introduction 

Generally, air temperature decreases with the increase of observation altitude, the change 
rate of which is called air temperature lapse rate (Barry and Chorley, 2003). The lapse rate 
along the terrestrial surface, called near-surface or surface air temperature lapse rate 
(SATLR), is a result of surface energy balance and determines atmospheric stability above 
the surface (Minder et al., 2010; Holden and Rose, 2011; He and Wang, 2020). It plays an 
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important role in the hydrological, glacial and ecological modeling (Jóhannesson et al., 1995; 
Petersen et al., 2013; Wang et al., 2016a), because the gridding surface air temperatures 
which are interpolated based on the SATLR can significantly affect the melting surface 
(Gardner and Sharp, 2009; Sun et al., 2015). Moreover, it is an important parameter in the 
fields of regional downscaling and reconstruction of high-resolution surface air temperature 
due to the strong relationship between air temperature and altitude (Dodson and Marks, 1997; 
Marshall et al., 2007; Yang et al., 2007; Gardner et al., 2009), which has an impact on the 
detection and attribution of regional climate change (Wilby et al., 2002; Xie et al., 2018). 

The SATLR was usually estimated based on the linear relationship between the surface air 
temperature and the altitude of surface climate observations (Harlow et al., 2004; Mokhov 
and Akperov, 2006; Gardner et al., 2009), and the surface air temperature records from me-
teorological observational networks were widely used due to their nature of normality and 
regularity (Li et al., 2013; Li et al., 2015; Guo et al., 2016; Ojha, 2017). In the aspect of 
estimation methods, the simple linear regression model solved with ordinary least squares 
(OLS) method was frequently used to calculate the SATLR (Rolland, 2003; Blandford et al., 
2008; Kattel et al., 2018). As the simple linear regression model, a kind of global model, 
could lead to many problems, including the spatial non-stationarity, when there was complex 
terrain and climatic condition in a large region, observational stations were usually divided 
into several groups and the SATLRs of each group were estimated separately (Fotheringham 
et al., 2002; Zhai et al., 2016; Qin et al., 2018). The division criterion was not always the 
same between different literatures. Some were based on the significant gradients of climatic 
elements and the spatial continuous distribution of stations (Guo et al., 2016), some were to 
divide the mountain areas into several parts according to the topography and climatic condi-
tions (Kattel et al., 2013; Shen et al., 2016), and some others took many factors into consid-
eration including the similar regional climate settings, the reasonable number of stations, 
and the grid division of longitude and latitude (Li et al., 2013; Du et al., 2018). Hence, the 
SATLR estimated in each group reflected the average state of SATLR in each sub-region, 
but it could not reflect the spatial continuous variation of the SATLR in the study area. 
Moreover, simple linear regression model may not reasonable in statistics, as it relies on the 
normality assumption and homogeneity of variance (Rencher and Schaalje, 2008). 

Compared with global model, the local model using subsets of observations centered on a 
focal calibration station could solve the above-mentioned problem (Lloyd, 2006). Moving 
window regression (MWR) model, a kind of local model, was increasingly used for the es-
timation of the SATLR in recent literatures. For instance, to estimate the SATLR at the sta-
tion, Li et al. (2015) used the observation records from the calibration station and its 20 
nearest neighboring stations, and He and Wang (2020) used 15 to 50 nearest neighboring 
stations inside a five-degree circle. Notwithstanding, the technique of MWR suffered from 
edge effects and the results were dependent on the size of the window (Fotheringham et al., 
2002; Zhang et al., 2018). On the basis of MWR model, the geographically weighted regres-
sion (GWR) model had taken the kernel function into consideration which assigned more 
weight on the stations which were geographically closer to the calibration station than those 
which were more distant (Brunsdon et al., 1996). It thus reduced the influence of the stations 
located in the boundary of statistical area in the parameter estimation and solved the prob-
lem of spatial non-stationarity (Brunsdon et al., 1996; Fischer and Getis, 2010). 
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The objective of this study is to estimate the SATLR in a large region with complex ter-
rain and climatic condition. Due to the advantages of GWR model, it was applied to estimate 
the SATLR in this research. The monthly mean surface air temperatures and the altitudes of 
the meteorological stations in China’s mainland were used to calculate the SATLR, which 
were described in Section 2. To avoid confusion, as most previous studies, the negative 
SATLR was regarded as the temperature decreasing with the increase of altitude, and the 
positive SATLR as the temperature increasing with the increase of altitude (Pepin et al., 
1999; Blandford et al., 2008; Kattel et al., 2015; Guo et al., 2016; Wang et al., 2018). The 
assessment for the model was made in Section 3.1, including the regression residuals and the 
coefficient standard errors of altitudes. The validation for the model and the comparison of 
the seasonal mean SATLR with previous studies were made in Sections 3.2 and 3.3, respec-
tively. The discussion and conclusions were presented in Sections 4 and 5, respectively. 

2  Materials and methods 

2.1  Data and preprocessing 

Two datasets were used in this research, which were provided by National Meteorological 
Information Center, China Meteorological Administration (CMA). One was the monthly 
mean surface air temperature and the recorded altitude of national meteorological stations 
(dataset-1), which was used to estimate SATLR with GWR model; the other was the hourly 
mean surface air temperature and the recorded altitude of automatic meteorological stations 
(dataset-2), which was used to validate the results of the model. 

Quality control and homogeneity adjustment for the surface air temperature of dateset-1 
had been made by Cao et al. (2016). The number of stations in the dataset was 2419, and 
they were featured as dense in the eastern part of China and sparse in the western part (Fig-
ure 1). The time period in this research was from January 1961 to December 2015. The 
missing records (accounted for about 4%) of the surface air temperature were replaced by 
the values which were predicted with recurrent neural network (RNN) algorithm (Bengio 
and Gingras, 1996; Kim, 2017), the Matlab codes of which were obtained from GitHub 
website (Atabay, 2016). The monthly mean, seasonal mean (spring: March, April, May; 
summer: June, July, August; autumn: September, October, November; winter: December, 
January, February), and annual mean temperatures were then calculated. The altitude records 
of stations were complete, ranging from −47.4 to 4801.2 m. 

The sub-dataset in the year 2013 of dataset-2 was used for the validation. Quality control 
of the sub-dataset was made as follows: (1) according to the boundary of China’s mainland, 
removed the stations with wrong latitude or longitude; (2) removed the stations the altitude 
records of which were missing or unreasonable; (3) checked the integrality of time records, 
and set the temperatures at the missing time records as missing values; (4) considering the 
limit of measurement, took the hourly temperature records falling outside of the bounds of 
−60 to 60 °C as missing values; (5) considering the case of instrument failure which could 
freeze the temperature records (Zhang et al., 2013), if no less than three consecutive hourly 
temperature records shared the same value, took the latter two or more as missing values; (6) 
removed the stations with the rate of missing data > 10% in any one month and the repeated 
stations with dataset-1. Finally, 10,924 stations were remained for use. Due to the relatively 



392  Journal of Geographical Sciences 

 

little difference of temperature in the month and the small missing rate, the monthly tem-
perature was just the mean of the recorded hourly temperature for each station. 

 
 

 
 
 

Figure 1  Topography of China and spatial distribution of meteorological stations in the dateset-1 

2.2  Estimation of SATLR 

As the SATLR was a parameter to measure the relationship between temperature and altitude, 
the altitude was considered as the only explanatory variable. For convenience, the tempera-
ture and altitude were denoted by yi and xi, respectively, at station i. The linear relationship 
between them could be expressed as 

 0 1i i i i iy x    
 

 (1) 

where βi0 was the intercept, βi1 was the regression coefficient for the xi, and εi was the ran-
dom error at station i. Because the goodness of fit (R2) measured how well the regression 

model fitted, if the R2 was high, say 2 0.7R ≥  (Dodson and Marks, 1997), the relationship 
was considered to be meaningful. In that case, βi1 was considered as a valid SATLR; other-
wise, βi1 was not a valid SATLR. 

In GWR model, a local regression equation was built for each station, and expression (1) 
was written as a vector expression with estimated regression coefficients at station i 
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i.e. 2419 in this research. Taken the geographical weights into account, expression (2) was 
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transformed into 
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where 1 2( , ,..., )i i i iNdiag W W WW . Because of the non-uniform spatial distribution of sta-

tions, adaptive Gaussian kernel was utilized for each fit station. The kernels had larger 
bandwidths where the stations were sparse and had smaller bandwidths where the stations 
were dense (Fotheringham et al., 2002).  
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where Wij and dij were the weight value of observation at station j for estimating the coeffi-
cient at station i and the distance on the earth between them, respectively, and di(n) was the 
adaptive bandwidth size defined as the nth nearest neighboring distance. The corrected 
Akaike Information Criterion (AICc) was utilized to search the optimal di(n) for the fit station, 
which was expressed as (Akaike, 1974; Hurvich et al., 1998; Fotheringham et al., 2002) 
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where ̂  was the estimated standard deviation of the error εi, and tr(S) was the trace of the 

hat matrix S each row of which was defined by T 1 T( )i i i i
S X X W X X W . The optimal n 

and di(n) were determined when AICc came to the minimum. 
The AICc with the number of nearest neighboring stations ranging from 4 to 100 were 

calculated with ArcGIS 10.5 software in this article. Though the results showed that the op-
timal n was different for the monthly mean temperature (Appendix Figure 1), there was little 

difference for βi1 when local 2 0.7R ≥  (the standard deviations of βi1 were almost less than 

1°C/km) (Appendix Figure 2). In addition, due to local multicollinearity, the condition 
number larger than 30 at the fit station was thought as unreliable in the GWR model 
(Mitchell, 2005; ESRI, 2018). Therefore, we took n=17 to carry out the calculation of GWR, 
which was the optimal n for the annual mean temperature, and took βi1 with the restriction of 

both local 2 0.7R ≥  and the condition number 30≤  as the SATLR at the fit station i. 

2.3  Assessment and validation 

In order to check whether the GWR model was reasonable for the estimation of the SATLR, 
the spatial relationship of regression residuals was detected (Leung et al., 2000). If there was 
statistically significant spatial clustering, the model was considered to be improperly speci-
fied, which indicated that a key explanatory variable had not been included in the model; 
otherwise, the model was properly specified (Mitchell, 2005). Spatial autocorrelation statis-
tic has the ability to detect the spatial relationship (Cliff and Ord, 1969, 1972; Páez et al., 
2002), which was usually measured by Moran’s Index (Moran, 1948). If the Moran’s Index 
was significantly positive in statistics, the spatial distribution of residuals was considered as 
clustered. As a comparison, the MWR model with the same nearest neighboring stations as 
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GWR model was carried out, and the Moran’s Index of the residuals was also calculated. 
Note that the residual in this article refers to the fitted temperature of the regression model 
subtracted by the observed temperature. 

The residual sum of squares (RSS) measures the discrepancy between the observed data 
and the data fitted by the GWR model, which was used to make the comparison between 
months. The smaller it was, the better the GWR model fitted to the observed temperature, in 
that month. Moreover, as the standard error of βi1 measures the reliability of βi1, the differ-
ence of the standard error and its percentage at each level in 12 months were compared 
(Wheeler and Tiefelsdorf, 2005). The smaller the standard error, the higher the confidence of 
estimated βi1 was (ESRI, 2018). 

The monthly temperatures at the 10,924 automatic stations in the year of 2013 that were 
predicted with the GWR model and calibrated by the corresponding monthly series of data-
set-1 were used for the validation. The differences between the predicted and the observed 
monthly temperatures and the mean absolute error (MAE) were used to measure the results 
of validation. 

2.4  Spatial distribution of SATLR 

The raster surfaces of βi1 were created by the GWR model. The spatial interpolation for both 
the local R2 and the condition number were based on the inverse distance weighting (IDW) 
method (Philip and Watson, 1982; Watson and Philip, 1985), with 17 nearest neighboring 
stations and 1 power of weight function. If the local R2<0.7 or the condition number >30, the 
corresponding βi1 would be taken as an invalid SATLR, so the SATLR in that area was 
shown as blank. 

3  Results 

3.1  Assessment for the GWR model 

As can be seen in Table 1, the residuals returned by the MWR model showed statistically 
significant spatial clustering for all months, which indicated that it was unreasonable that the 
distant stations were given the same weight with the close stations in the regression window 
when only one explanatory variable was included in the model. Compared with the MWR, 
the GWR performed much better, with the residuals non-clustered except for in February 
and March. Nevertheless, all of the residuals returned by the GWR model for seasonal data 
did not show statistically significant spatial clustering (not shown). Therefore, the GWR 
model was considered as broadly reasonable for the estimation of SATLR. 

 
Table 1  Moran’s Index of residuals returned by the MWR and the GWR model, respectively 

  Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

MWR 0.0354** 0.0518** 0.0661** 0.0497** 0.0449** 0.0415** 0.0419** 0.0486** 0.0345** 0.0318** 0.0471** 0.0377** 

GWR 0.0038 0.0102** 0.0082* ‒0.0055 ‒0.0119**‒0.0175**‒0.0194**‒0.0186**‒0.0224**‒0.0224** ‒0.0072 ‒0.0001 

Note: * and ** indicated the value was significant at the 0.05 and 0.01 level, respectively. The significant positive and 
the significant negative values represent the clustered and the dispersed spatial relationship, respectively; otherwise, the 
spatial relationship was random.  
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For the annual mean series, 85.6% residuals ranged from −0.5 to 0.5°C, and most of the 
stations with relatively large residuals were located in the western and the northern parts of 
China, where the distribution of stations was sparse (Figure 2a). The statistically significant 
(at the 0.05 level) negative linear relationship between the residual and the station density 
also indicated that high station density (i.e., short distance between stations) made the GWR 
model more accurate (not shown). The large standard errors of βi1 were mostly found in the 
areas with flat terrain, especially in the North China Plain and the Middle-Lower Yangtze 
Plain with extremely large standard errors (>7°C/km) (Figure 2b). It indicated that there was 
strong local multicollinearity in those areas, and the confidence of estimated βi1 was low. 
The large standard errors of βi1 may be related to the spatial stratified heterogeneity (Wang 
et al., 2016b). As there was little variation of altitude in these areas, the spatial heterogeneity 
of surface air temperature was mainly caused by other factors, e.g. land cover/use, rather 
than altitude (Yang et al., 2009; Qu et al., 2013). 

For the monthly mean series, the spatial distribution of residuals was similar with the an-
nual mean series, with larger percentage of small residuals in summer than in winter (not 
shown). The smaller RSS also showed that the temperatures fitted by the GWR model were 
closer to the observed temperatures in summer (Figure 3). The results showed that the linear 
relationship between temperature and altitude was generally stronger in summer than in 
winter, which may be related to the frequent temperature inversion in winter, especially in 
the northern part of China (Li et al., 2013; Du et al., 2018). Moreover, the percentage of sta-
tions with large standard errors of βi1 was smaller in summer than in winter (Figure 3), 
which indicated that in some areas the surface air temperature was strongly affected by the 
altitude in summer, but the influence degree became weaker in winter. 

 
 

 
 

Figure 2  Residual (a) and standard error of βi1 (b) at each fit station for the annual mean series  

3.2  Validation for the GWR model 

As is shown in Figure 4, the stations with differences between the predicted and the ob-
served monthly temperatures ranging within about 1.0°C and 2.5°C accounted for 50% and 
95%, respectively. The small MAE for all months (varied from 0.52 to 0.91°C) indicated 
that the GWR model had a strong predictive ability for the surface air temperature (Table 2).  
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Figure 3  Cumulative percentage of stations with different levels of standard error of i1 (left axis) and RSS 
(right axis) for the monthly mean series (The black line showed the monthly variation of RSS. The color bar for the 

standard error of i1 was the same as that in Figure 2b.) 
 

 
 

Figure 4  Boxplot of the differences between the predicted and the observed monthly temperatures in the 10,924 
automatic stations (The differences above-mentioned were the values subtracted the observed values from the predicted 
values. The low and the high edge of the boxes represented the position of the lower quartile of the 25th percentile and 
the upper quartile of the 75th percentile, respectively. The white lines across the boxes represented the medians. The 

whiskers extending from the boxes represented the 2.5th percentile and the 97.5th percentile, and the red “＋” repre-
sented the outliers.) 

 

Moreover, the MAE in warm months (summer, later spring, and early autumn) were smaller 
than that in cold months (winter, later autumn, and early spring), which indicated that the 
GWR model fitted better in warm months. As to the outliers, 34% stations (average per-
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centage for all months) were located in the western part (<100°E) of China, and the statisti-
cally significant (at the 0.05 level) negative linear relationship in all months between the 
station density (interpolated by the station density of dataset-1 based on a kernel function) 
and the absolute differences suggested that the denser the stations were, the more reliable the 
GWR model was. 

 

Table 2  MAE in the assessment stage and the validation stage for each month 

  Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

Assessment 0.42 0.37 0.32 0.28 0.27 0.26 0.25 0.25 0.26 0.29 0.33 0.40 

Validation 0.84 0.68 0.64 0.56 0.57 0.52 0.58 0.63 0.61 0.75 0.72 0.91 

Note: The unit of MAE was °C. 
 

3.3  Comparison of estimated SATLR with previous studies 

The seasonal mean SATLR estimated with GWR model in several main mountainous areas 
of China’s mainland with different characteristics of SATLR were compared with the results 
of previous studies (Figure 5). It was noteworthy that the spatial scale of SATLR distribution 
was wider in summer when compared with that in winter, due to the stronger linear rela-
tionship in summer between temperature and altitude. In the eastern part of China, the 
large-scale blank areas were related to the extensive flat terrain, including the North China 
Plain, the Middle-Lower Yangtze Plain, and the Northeast China Plain, with low confidence 
of estimated values. 

(1) Tibetan Plateau. The seasonal variation pattern in the eastern part of the Tibetan Pla-
teau was steepest-in-winter and shallowest-in-summer, which was in accordance with pre-
vious studies (Li et al., 2013; Kattel et al., 2015; Li et al., 2015). The winter mean SATLR 
with steeper than −7°C/km was found on a large scale, and it even steeper than −10°C/km in 
some areas. The steep seasonal mean SATLR in the Tibetan Plateau was also reported by Li 
et al. (2013), Li et al. (2015), and Zhang et al. (2018). 

(2) Tianshan Mountains. The summer mean SATLR steeper than −8°C/km was found in 
the Tianshan Mountains, which was in accordance with previous studies (Li et al., 2015; 
Shen et al., 2016; Du et al., 2018). In winter, the mean SATLR was not stable, due to the bad 
linear relationship between the altitude and the surface air temperature, which was evi-
denced by Shen et al. (2016). 

(3) Qilian Mountains. The steepest seasonal mean SATLR occurred in summer (−7 to 
−6°C/km), followed by that in spring (−6 to −5°C/km) and autumn (−6 to −4°C/km), and the 
shallowest one did in winter (−4 to −3°C/km), the seasonal variation of which was in accor-
dance with previous studies (Li et al., 2015; Lin and Chang, 2018). 

(4) Qinling Mountains. The distinctive characteristic of seasonal mean SATLR in the 
Qinling Mountains was that the annual range was relatively small, and the mean SATLR 
almost kept about −7 to −5°C/km for all seasons. This phenomenon has been found in the 
authors’ previous studies related to land surface temperature lapse rate (Qin et al., 2018). 
Furthermore, the results showed by Li et al. (2015) and Wang (2015) indicated that the an-
nual SATLR range was no more than about 2°C/km in the mountains. 
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Figure 5  Spatial distribution of seasonal mean SATLR estimated with GWR model (The blank areas in the study 
area representing the SATLRs were invalid as described in Sections 2.2 and 2.4.) 

4  Discussion 

The outliers with large differences between the predicted and the observed monthly tem-
peratures may be related to both the data quality of dataset-2 and the confidence of GWR 
model especially in the areas with sparse stations. On one hand, as the quality control and 
the calculation method for the monthly temperature of the dataset-2 used for validation were 
somewhat rough, the observed values may have large differences with the real values in 
some stations. Moreover, the wrong-recorded altitudes in the dataset-2 at a few stations may 
also result in the incorrect predicted values. On the other hand, as the weight function was 
the kernel with the radius of bandwidth, the weights were the same at any directions for the 
two stations sharing the same spatial distances to the fitted station, which may not be rea-
sonable for the areas with sparse stations due to the different climatic characteristics be-
tween two distant stations. Furthermore, due to the complexity of GWR model, overfitting 
may occur, which could decrease the generalization ability when a new dataset was used to 
make validation (Harrell, 2015; Du et al., 2020), and could lead to higher MAE and larger 
percentage of outliers when compared with those in the assessment stage (Table 2). 

The linear relationship between the altitude and the surface air temperature in summer 
was generally stronger than in winter, which was also reported by Rolland (2003) and 
Gardner et al. (2009). This may be related to the well-mixed air induced by stronger turbu-
lence and convection during summer, and the frequent occurrence of temperature inversion 
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in plains and basins during winter. The well-mixed air will benefit the formation of normal 
air stratification under the influence of net surface radiation, but the temperature inversion in 
winter would disturb the normal relationship between the surface air temperature and alti-
tude. 

In this article, the distance of the 17th nearest neighboring stations was chosen as the 
bandwidth to estimate the SATLR for all stations, i.e. global optimal bandwidth. As the re-
sults of GWR were sensitive to the bandwidth of the weight function, the bandwidth might 
not be always the optimal for any one station (Fotheringham et al., 2002; Lu et al., 2017). 
For example, the bandwidth with the 17th nearest neighboring stations was optimal for a 
station, but that with the 18th nearest neighboring stations for another station. Therefore, 
further studies were required to make it clear that how much the differences of the SATLR 
estimated with the global optimal bandwidth and the local optimal bandwidth. In addition, 
due to the similar climatic characteristics on the same aspect of a specific mountain in the 
same climate zones, the weight function could be adjusted in future according to the digital 
elevation model (DEM) and the climate zones. 

5  Conclusions 

This research made first attempt to use GWR model to estimate the SATLR. The assessment 
and validation for the model and the comparison of seasonal mean SATLR with previous 
studies were also made. Conclusions can be drawn as follows:  

(1) The spatial relationship of regression residuals was broadly non-clustered, which in-
dicated that it was reasonable for the estimation of SATLR using GWR model.  

(2) The small MAE in all months indicated that the GWR model had a strong predictive 
ability for the surface air temperature.  

(3) The similar conclusions with previous studies for the seasonal mean SATLR further 
evidenced the accuracy of the estimation by applying the new method.  

Compared with the traditional linear regression methods, the GWR method has potential 
application for estimating the SATLR in a large region with complex terrain and climatic 
condition. 
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Appendix 
 

 
 

Appendix Figure 1  AICc varied with the increase of nearest neighbor stations 
Notes: The number of nearest neighbor stations was 17 for the year, and 17, 14, 13, 17, 17, 17, 19, 19, 19, 19, 17 and 17 
for the 12 months from January to December, respectively. The x-value of the vertical dashed line was 17. The x-value of 
the gray band off the vertical dashed line ranged from 13 to 19.  
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Appendix Figure 2  Standard deviations of βi1 when n varied from 13 to 19 

Notes: The x-value of a black dot represented the average local R2 when n varied from 13 to 19 at the fit station. The blue verti-

cal line represented the critical value of local R2=0.7, and the red horizontal lines represented the standard deviation of βi1 equal 

to 1°C/km. The meanings of the parameters above-mentioned were described in Section 2. 


