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Abstract
Missing data were frequently found in the instrumental climatic records, which hindered the statistical analyses on climate
change. A novel imputation method, called Imputation Based on Decomposition of Time Series (IBDTS), was developed in
this article for the climatic data with strong seasonality and spatial correlation. It was to decompose the time series into three
components first, and then to predict the missing values in each component. The trend component was predicted by regression
analysis, the seasonal component was predicted by spectral analysis, and the remainder component was predicted by spatial
interpolation. The IBDTS imputation method showed relatively small errors in performance, and kept the real attributes of
climatic series, including the amplitude and phase with the cycle period of 12 months, and the linear trend. The sensibility to
station distance for the IBDTS method was relatively small. In addition, the IBDTS method had the ability to deal with the data
with none of or only a few of complete series, and it was possible to be applied not only in the field of climatology but also in
other fields as long as the data had the intrinsic properties of strong seasonality and spatial correlation.
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1 Introduction

Climatic data can be missing for many reasons (Shen and
Somerville 2019). For instrumental time series, the missing
data may be caused by the loss of yearbooks due to wars or
fire accidents etc. in the early period, and the occasional inter-
ruptions of automatic stations, instrument malfunctions, and
network reorganizations etc., in the most recent period
(Simolo et al. 2010). Missing data may lead to inaccurate
estimation in climate research (Stooksbury et al. 1999;
Schneider 2001; Massetti 2014; Domonkos and Coll 2019).
Moreover, as most statistical methods assume that the dataset

is complete, it is necessary to eliminate missing data before
addressing the substantive questions (Hopke et al. 2001;
Mudelsee 2014).

There were two ways to eliminate missing data: one was to
remove the stations with missing data; the other was to replace
missing data with reasonable substituted values (Kabacoff
2015). As removing the stations with missing records would
lose large amounts of information, the second way was usu-
ally chosen to deal with the missing data. In statistics, the
process of replacing missing data was called imputation
(Little and Rubin 2002; van Buuren 2012).

In terms of the number of variates with missing data, the
imputation methods could be classified into univariate impu-
tation and multivariate imputation (Little and Rubin 2002; van
Buuren 2012). As the climatic data was characterized by huge
quantities, complex relationships between climatic elements,
and mixed missingness mechanisms (Little and Rubin 2002;
Wallace and Hobbs 2006; Zhang 2018), multivariate imputa-
tion was difficult to accurately deal with the variety of
missingness with uncertain statistical distribution, and it might
cost a lot of computational resources and time, especially for
the high temporal resolution datasets, e.g., hourly records,
which reduced the imputation efficiency. Moreover, as many
observation analyses on climate change were based on single
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element (Bindoff et al. 2013), in this article we only focused
on the univariate imputation to single climatic element rather
than the multivariate imputation to all.

There were many traditional univariate imputation
methods, including mean imputation, regression imputation,
stochastic regression imputation, hot-deck imputation, cold-
deck imputation, etc. (Dempster 1977; Ford 1983; Little and
Rubin 2002). Though those traditional imputation methods
were simple and convenient, limitations and drawbacks were
shown in the practical applications (van Buuren 2012; Kang
et al. 2012). For instance, they lacked the utilization of the
temporal information (Luo et al. 2018). In recent years,
model-based methods and machine learning were introduced
for imputation of time series, such as Kalman filtering, K-
nearest neighbor (KNN), recurrent neural network (RNN),
and auto-associative neural network (AANN) (Grewal and
Andrews 2008; García-Laencina et al. 2010; Mudelsee
2014). In the fields of atmospheric and climate sciences, em-
pirical orthogonal function (EOF) and expectation maximiza-
tion (EM) algorithm were also frequently used to fill missing
climatic data (von Storch and Zwiers 1999; Navarra and
Simoncini 2010; Wilks 2019). However, most of the ad-
vanced algorithms and software packages were designed and
developed at the service of multivariate data, which could not
be applied to the univariate data directly (Moritz and Bartz-
Beielstein 2017). Moreover, climatic data were characterized
by not only the properties of time series but also the spatial
correlation related to the geographical location, but few impu-
tation methods took both of them into consideration at the
same time.

Therefore, it was necessary to develop an imputation meth-
od to deal with the climatic data due to its distinctive spatio-
temporal attributes. On the one hand, as many climatological
processes were linked to externally enforced deterministic cy-
cles, e.g., the annual cycle, the temporal variation of climate
was usually characterized by strong seasonality (von Storch
and Zwiers 1999; Mudelsee 2014; Deng and Fu 2019). If one
value was missing, it was hopeful to be filled based on the
periodicity of climatic time series. In order to find a reasonable
value to replace the missing value, spectral analysis was a
good way to extract the periodic components of time series
(von Storch and Zwiers 1999; Smith 1999; Alessio 2016;
Shumway and Stoffer 2017). On the other hand, there was
strong spatial correlation for climatic data. Generally, the clos-
er the meteorological stations were located, the closer the
values of climatic elements were observed. If there was a
missing value at any one station, it usually could be filled by
the records from its neighbor stations with some methods.
Those kinds of methods which were to fill the missing data
based on spatial relationship were usually called interpolation,
including inverse distance weighting (IDW), Kriging, two-
dimensional splines, etc. (Dobesch et al. 2007; Fischer and
Getis 2010; Li and Heap 2014; Kisaka et al. 2016).

In this article, the data of surface air temperature, a repre-
sentative climatic element with strong seasonality and spatial
correlation, was taken as an example to make imputation.
Based on the decomposition of time series, a novel imputation
method was developed with the consideration of both tempo-
ral and spatial information of the climatic data. This paper was
organized as follows: the data and the imputationmethodwere
described in Section 2; the imputation results and the compar-
isons with three previous methods were shown in Section 3;
discussion was made in Section 4 on the advantages of the
imputation method developed in this article and the disadvan-
tages which were hopeful to be improved in future; and con-
clusions were drawn in Section 5.

2 Materials and methods

2.1 Data

The dataset of monthly surface air temperature series was
provided by National Meteorological Information Center,
China Meteorological Administration. The number of meteo-
rological stations in the dataset was 2419, with 143 national
reference climate stations, 682 national basic meteorological
stations, and 1594 national ordinary stations, respectively. The
observed time ranged from January 1951 to December 2015
(780 months in total). Quality control and homogeneity ad-
justment had been made by Cao et al. (2016). The spatial
distribution of stations was featured as dense in the east part
of China and sparse in the west part (Fig. 1a).

The missing rate of the dataset was 13.74%. In terms of the
length of monthly series, though it was short at some stations,
the stations with records ≥ 660 months accounted for 81.48%
(Fig. 1a). In terms of the number of stations, it ranged from 142
to 2419 throughout the 780 months (Fig. 1b). It was noted that
the stations were few during the first decade, and from then on,
the number of stations increased to ≥ 2028. Therefore, the
monthly series from January 1961 to December 2015
(660 months in total) was used in this research. The missing rate
during this period was 4.22%. There were 1600 stations with
complete records, and for the other 819 stations, the number of
missing values in the monthly series ranged from 1 to 598. The
annual values were considered as missing as long as there were
any missing monthly values during the year. Accordingly, the
number of missing values in the annual series ranged from 1 to
50, at those stations with incomplete records.

2.2 Methods

The meteorological stations were divided into two groups: G1

with complete records, and G2 with at least one missing value
at the station. It was necessary to make imputation for the
missing data in G2. A novel imputation method developed in
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this article, called Imputation Based on Decomposition of
Time Series (IBDTS), was used to predict the values of
monthly series in G2. The IBDTS method used the data infor-
mation from not only G1 but also G2 itself (Fig. 2). Finally, the
missing values in G2 would be replaced by the predicted
values.

2.2.1 Decomposition of time series

The monthly temperature series, denoted by TEM[mon],t at
time point t, could be decomposed into three components:
(1) the trend component, denoted by Tt, which reflected the
long-term progression of temperature change (secular

variation); (2) the seasonal component, denoted by St,
which reflected the seasonality (seasonal variation); (3)
the remainder component, denoted by Rt, which was relat-
ed to the stochastic weather variability, measurement error,
etc. (irregular variation) (Kendall 1976; von Storch and
Zwiers 1999; Hyndman and Athanasopoulos 2018).
Therefore, the monthly temperature series of a station in
G1 at time point t could be expressed as

TEM mon½ �;t ¼ Tt þ St þ Rt ð1Þ

Because of the relatively small climatic change on time
scale during the research period in this article, linear trend
was assumed. Hence, the Tt could be expressed as

Fig. 1 The spatial distribution of
meteorological stations (a) and
the number of stations varied with
time (b). The color at each station
in patch (a) represented the length
of monthly series with records:
the bluer the color, the longer the
monthly series; the redder the
color, the shorter the monthly
series. The maximum length was
780, i.e., complete monthly
series; the minimum length was
62
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Tt ¼ b0 þ b1 � t ð2Þ
where b0 and b1 were the intercept and the linear trend of
linear regression fitted by the least-squares, respectively; t
was a sequence number of chronological month (t = 1, 2, 3,
⋯, 660).

The discrete Fourier transform (DFT) was used to trans-
form the time domain signal, the sequence Xt(=TEM[mon],t −
Tt), into the frequency domain signal, the sequence Yf, and the
process was expressed as

Y f ¼ ∑L
t¼1X t � e−i2πL t−1ð Þ f ð3Þ

where i was the imaginary unit; L was the length of t; f was a
normalized frequency (f = 0, 1, 2, ⋯, L − 1) (Proakis and
Manolakis 1996; von Storch and Zwiers 1999; Alessio
2016). In consideration of the Euler’s formula (Moskowitz
2002), the expression-(3) was expressed as

Y f ¼ ∑L
t¼1X t � cos

2π
L

t−1ð Þ f
� �

−i � sin 2π
L

t−1ð Þ f
� �� �

ð4Þ

The normalized frequency f was a sinusoid’s frequency
with f cycles per L samples. Yf was a complex number that
encoded both amplitude and phase of a complex sinusoidal
signal. The amplitude and the phase at frequency f were re-
spectively

Af ¼ Y f
�� ��=N ð5Þ

c f ¼ −i � ln Y f = Y f
�� ��� � ð6Þ

where |Yf| was the modulus of complex number Yf, and N was

the number of stations in G1. When f=0, Af = 0 was the direct
current component of Y (i.e., the composite of Yf at all fre-
quency f), which was equal to the arithmetic mean value of the
sequenceXt. In addition, the inverse discrete Fourier transform
(IDFT) was derived as

X t ¼ 1

L
∑L−1

f¼0Y f � ei2πL t−1ð Þ f ð7Þ

As f referred to the number of cycles in L months, there
were L/f months in each cycle, which was defined as cycle
period. Due to the symmetrical characteristic of Yf, the
actual amplitude was equal to the double value of Af when
f varied from 1 to L/2. When the cycle period was equal to
12 months (i.e., f = 55), based on the expression-(7), the
component of Yf = 55 could be transformed into the time
domain signal, which was the half of the seasonal com-
ponent (i.e., St/2). Then, we could get the St. After the Tt
and St were extracted from the TEM[mon],t, the remaining
component was Rt.

2.2.2 Prediction for the trend component

The annual temperature series of the stations in G2, denoted by
TEM[ann],yr at the yrth year without any missing monthly
values, the value of which was the arithmetic mean of the 12
monthly values in the year. Although there were somemissing
values in the annual temperature series, linear regression could
also be applied to G2. The expression of trend component of
the stations in G2 was similar to that in G1, by using the annual
temperature instead of the monthly temperature at the time
point of optimal month. The optimal month for a station was

bm ¼ argmin
m

∑yr TEM ann½ �;yr−TEM mon½ �;yr mð Þ� �2n o
m ¼ 1; 2;⋯; 12ð Þ

ð8Þ
where TEM[mon],yr(m) was the monthly temperature at the mth

month within the yrth year. Note that the total number of yr
varied with stations, and the largest yr was less than L/12.

2.2.3 Prediction for the seasonal component

The DFT was also used to calculate the amplitude and phase
where cycle period was 12 months in G2. If there were any
missing monthly values in the year, the whole monthly values
in this year were regarded as missing. By omitting the months
with missing values, a new monthly temperature series was
generated which included the completed monthly temperature
values in the years that the value of annual temperature
existed. Note that corresponding trend component had been
subtracted before the amplitude and phase were calculated.
With the amplitude and phase at the frequency where the cycle

Fig. 2 Data stream between the observed and the predicted values in the two
groups. T, S, and R represented the trend component, the seasonal
component, and the remainder component, respectively (see Section 2.2.1).
The direction of arrows represented the direction of data stream, and the
numbers above the arrows reflected the steps of data processing
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period was 12 months, the seasonal components of stations in
G2 could be calculated by the expression (7).

2.2.4 Prediction for the remainder component

Based on the remainder components of stations at time point t
in G1, the values of remainder components of stations at time
point t in G2 were predicted through the IDW interpolation
(Philip and Watson 1982; Watson and Philip 1985). The
values of 12 nearest neighbor stations were used to calculate
the value of the interpolated station, and the power of weight
function of IDW was set as 1.

2.3 Assessment

2.3.1 Criteria for performance evaluation

The root mean squared error (RMSE), mean absolute error
(MAE), and mean bias error (MBE) were used to evaluate
the performance of imputation method, which were expressed
as follows (Willmott and Matsuura 2005; Du et al. 2020)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K
∑K

k¼1
dTEM mon½ �;k−TEM mon½ �;k


 �2
r

ð9Þ

MAE ¼ 1

K
∑K

k¼1
dTEM mon½ �;k−TEM mon½ �;k

��� ��� ð10Þ

MBE ¼ 1

K
∑K

k¼1
dTEM mon½ �;k−TEM mon½ �;k


 �
ð11Þ

where TEM[mon],k and dTEM mon½ �;k were the observed and the
predicted monthly temperature at time point k, respectively; K
was the number of observed values in the monthly tempera-
ture series (K < L = 660).

In addition, three special indicators for climatic data were
used to measure whether or not the imputation changed the
attributions of true data. They were the amplitude and the
phase with the cycle period of 12 months, and the linear trend,
respectively. As the missing rate during the period of 1961–
2015 was small, we assume that the observed values kept the
attributions of true data.

2.3.2 Comparisons with previous imputation methods

Based on the above-mentioned six indicators, three kinds of
previous imputation methods were compared with the IBDTS
method, which were hot-deck imputation, RNN imputation,
and IDW interpolation. The first one utilized none of the spa-
tiotemporal information of the climatic data, the second one
utilized only the temporal information, and the third one uti-
lized only the spatial information to fill the missing values.

The hot-deck imputation was to predict the missing data
with the values from a similar complete data series, which was
one of the most common method in practice (Little and Rubin

2002; García-Laencina et al. 2010). In this article, for each
station in G2, the most similar station in G1 was selected to
make the prediction. The selection criteria were the correlation
coefficient of anomaly series between the predicted station in
G2 and all the stations in G1; the higher the correlation coef-
ficient was, the more similar they were. Note that the anomaly
here was referring to the difference between the time series
and its mean (i.e., multi-year mean). In G2, the values in the
years with missing monthly values were ignored when calcu-
lating the mean of monthly temperature series. The anomaly
series of the station selected from G1 was then taken as that of
the predicted station in G2. With its mean added, the monthly
temperature series could be predicted.

The RNN imputation was to predict the missing data by
the feedforward networks with backpropagation training,
which had a dynamical memory to keep temporal informa-
tion (Lukoševičius and Jaeger 2009; García-Laencina et al.
2010; Pasini 2015). In this article, for each station in G2, the
three most similar stations in G1 were selected to make the
prediction, which was also based on the correlation coeffi-
cient of anomaly series described above. The RNN with 3
input layers, 2 hidden layers with 5 neurons each, and 1
output layer were created. According to the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm (Broyden
1970; Fletcher 1970; Goldfarb 1970; Fletcher 1987;
Nocedal and Wright 2006; Haghighi 2014), the monthly
temperature series of the three stations in G1 (input) and that
of the predicted station in G2 (output) at the time points (i.e.,
months) with records in the predicted station were used as
training dataset. The RNN toolbox for MATLAB was
downloaded from GitHub (Atabay 2016).

IDW interpolation was a spatial interpolation method,
which was to predict the missing data by calculating a weight-
ed average with the inverse distance between the predicted
station and its surrounding stations (Myers 1994; Dobesch
et al. 2007; Xu et al. 2013). In this article, for each time point,
the missing data of stations in G2 were only predicted by the
complete series in G2. The parameters of IDW were the same
with those in the IBDTS imputation.

In addition, an experiment was designed to test the
sensibility to station distance for the imputation methods.
Firstly, n1 (={5, 10, 15, 20, 30, 40, 50, 75, 100, 200, 300,
500, 700, 1000, 1300, 1600}) stations from G1 and n2
(={5, 10, 15, 20, 30, 40, 50, 75, 100, 200, 300, 500,
700}) stations from G2 were picked out at random.
Secondly, 50 repeated trials were made for each combi-
nation of n1 and n2, and the average station distances in
each group for each trial were calculated. The average
station distance was the mean of distance between any
two connected stations under the division of triangulated
irregular network (TIN) (Delaunay 1934). Thirdly, the
mean and standard deviation of RMSE were calculated
for each combination of n1 and n2.

An imputation method for the climatic data with strong seasonality and spatial correlation



3 Results

3.1 Amplitude and phase

The spectrogram showed that the largest amplitude occurred
in the cycle period of 12 months, followed by the cycle period
of 6 months (Fig. 3), which was in accordance with the pre-
vious studies (Deng et al. 2018). The amplitude with the cycle
period of 12 months at all 2419 stations ranged from 2.8 to
24.4 °C, which showed clear gradual increase from low lati-
tude to high latitude (Fig. 4a). The higher the amplitude was,
the larger the temperature fluctuated within a year.

The phase with the cycle period of 12 months also showed
a gradual spatial variation across China’s mainland, with
smaller values in the southeast part of China (Fig. 4b). Note
that theoretically, the phase ranged from −π to π. However, as
the phases at all the 2419 stations were near the two values of
−π and π, a numeral of 2π was added to the phases which
were less than 0. The larger the phase was, the earlier the
temperature extremes in the cosine wave occurred within a
year; vice versa. Note that the phase of π represented the
hottest and coldest condition, i.e., the crest and trough in the
cosine wave, occurred in July and in January, respectively,
and meanwhile, June and August tied for the 2nd hottest,
May and September tied for the 4th hottest, April and
October tied for the 6th hottest, etc.

3.2 Imputation results

As was shown in Fig. 5, the RMSE of IBDTS method was
relatively small at most of the stations (97.19%). The RMSEs
larger than 1.0 were mainly found in the west part of China
where the station distribution was sparse. The negative corre-
lation coefficient between RMSE and station density also
showed that the lower the station density was, the larger the
RMSE was, which indicated that the station distance had an
effect on the accuracy of imputation. These results may be
related to the bad performance of the prediction for the re-
mainder component in the imputation process. In this article,
the remainder component was predicted by the IDW interpo-
lation, which was a simple spatial interpolation method with
limited accuracy.

3.3 Comparisons with previous imputation methods

3.3.1 RMSE, MAE, and MBE

According to the results of RMSE and MAE, the IBDTS
method performed better than the hot-deck and the IDW
method, but a little worse than the RNN method (Table 1).
Both the mean and the standard deviation of RMSE andMAE
of the IDW method were the largest, which indicated that
there would be much inaccurate for the imputation of climatic
data with only the consideration of spatial information.
However, by the means of decomposing the time series into
three components, the missing values in each component were
filled separately, with only the remainder component filled by
the IDW interpolation, and the results could be greatly im-
proved (see the RMSE and MAE of IBDTS method). As the
hot-deck method utilized the information of similar complete
series, the errors of performance were relatively small, even if
it did not utilize any spatiotemporal information. Compared
with the hot-deck method, the RNNmethod performed better.
These results showed that the accuracy of imputation could be
improved with temporal information included. In addition, in
contrast with other three methods, theMBE of IBDTSmethod
showed that it had negative average bias. Though the absolute
value of the mean of MBE of IBDTS method was a little large
than the IDW method, the standard deviation of MBE was
much smaller than its. Overall, in the aspect of three common
statistical indicators, the performance of the IBDTS method
was better than the hot-deck and the IDW method, but worse
than the RNN method.

3.3.2 Amplitude, phase, and linear trend

As was shown in Fig. 6, the amplitude, phase, and linear trend
could be changed more or less by the imputation process. In
terms of the amplitude and phase, the RNNmethod performed
much better than the hot-deck and the IDW method. These

Fig. 3 Spectrogram of the monthly temperature series of the 2419
stations. The ordinate represented the actual amplitude calculated with
DFT; the lower abscissa represented the frequency, which was equal to f/
L, with f ranging from 0 to L/2 (see Section 2.2); the upper abscissa
represented the cycle period, which was equal to the reciprocals of the
values on the lower abscissa
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results should be related to that both the hot-deck and the IDW
method did not utilize the temporal information of incomplete
series itself. As to the hot-deck method, the amplitude and
phase at the predicted station in G2 were just replaced by that
at the stationmost related to it in G1, leading to a large error for
amplitude and phase in the area with sparse stations. In addi-
tion, all of the three previous imputation methods made the
phase smaller, with the medians lower than the zero-value
line, respectively (Fig. 6b). These results were very possibly
caused by the fact that there were a lot of stations with missing
data in the west part of China. The information which were
used to fill the missing data at those stations mostly came from
the stations in G1 located in the east part of China, where the
phase was smaller (see Fig. 4b).

As to the linear trend, the difference on performance be-
tween the three imputation methods was small, with the RNN
method slightly better than the other two (Fig. 6c). The sta-
tions at which the absolute differences of linear trend between
the predicted series and original series ranged within 0.2 °C/
decade accounted for 94.63%, 95.48%, and 93.04% based on
the hot-deck, RNN, and IDW methods, respectively, and the
large differences mostly occurred when missing rate was larg-
er than a half. Whether the linear trends of original series were
positive or negative, those of predicted series based on the
three methods were mainly ranging from 0.0 to 0.5 °C/decade
(not shown). These results may be highly related to the fact
that the linear trends of 97.81% stations in G1 were in that
range.

Fig. 4 Spatial distribution of the
amplitude (a) and phase (b) with
the cycle period of 12 months.
There were 2419 stations in total:
the dots with outlines represented
the stations in G2; otherwise, in
G1

An imputation method for the climatic data with strong seasonality and spatial correlation



Compared with the three previous imputation methods, the
IBDTSmethod developed in this article kept the real attributes
of climatic data in original series, including the amplitude,
phase, and linear trend.

3.3.3 Sensibility to station distance

The experimental results showed that the station distance in G2

had a little effect on the RMSE, but the effect of station distance
in G1was significant (not shown). For all of the four imputation
methods, the mean of RMSE showed systematic increase with
the increase of station distance in G1, and the increase rates of
mean and standard deviation of RMSE of IBDTS method were
lower than that of hot-deck and IDW methods, but a little
higher than that of RNN method (Fig. 7). When the average
station distance in G1 was about 100 km, the performance of
the four imputation methods were relatively close; however,
when the distance became large, the advantage of IBDTS and
RNN methods was apparent. Overall, compared with the hot-
deck method, the IBDTS and the RNN methods were more
reasonable for the imputation in the areas with sparse stations.

4 Discussion

Due to the imputation mechanism of the IBDTS method, any
outliers in the series might lead to wrong prediction to the
remainder component, and the inhomogeneous series had an
impact on the trend estimation (Wang and Swail 2001;
Vincent et al. 2012); therefore, it was necessary to make qual-
ity control and homogeneity adjustment before imputation. As
the imputation method had taken not only the neighboring
stations but also the predicted station itself into account and
the trend and the seasonal components which accounted for
dominant proportion of the whole components were predicted
based on the predicted station itself, any one missing value in
the sequence of remainder component could be predicted
based on the its neighboring stations with records at that time
point; therefore, the IBDTSmethod could deal with the data in
which none of or only a few of climatic series were complete.

In terms of RMSE, MAE, and MBE, the IBDTS method
behaved better than the hot-deck and IDWmethods but worse
than the RNN method. However, all of the three previous
methods had changed the attributes of the original series, in-
cluding amplitude, phase, and linear trend, whichmay have an
impact on the detection and attribution of climate change.
Moreover, both the hot-deck and the RNNmethods depended
on the stations with complete series, which may made them
unavailable to the imputation of the climatic series observed in
the early period characterized by large amounts of missing
data with few complete series (Brönnimann et al. 2018).

Nevertheless, there were some flaws of IBDTS method,
which could be improved in the future. Firstly, as the linear
trend during the recorded years may not represent that
throughout the whole time series, the decomposed linear trend
from the original series may be not correct when there were

Fig. 5 Spatial distribution of the
RMSE of IBDTS method. The
colored dots represented the
stations in G2, and the stations in
G1 were marked with hollow

Table 1 Comparison results of RMSE, MAE, and MBE between four
imputation methods. The mean and the standard deviation (the values in
the brackets) were calculated

Methods Hot-deck RNN IDW IBDTS

RMSE 0.472 (0.264) 0.277 (0.148) 1.162 (1.364) 0.396 (0.232)

MAE 0.376 (0.214) 0.213 (0.110) 1.065 (1.336) 0.309 (0.179)

MBE 0.068 (0.167) 0.000 (0.001) 0.021 (1.667) −0.023 (0.043)
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many missing values, therefore, the extraction of linear trend
should be improved. Secondly, it should be compared that the
difference of accuracy to estimate the remainder component

between different spatial interpolation methods to check if
other methods behaved better. Thirdly, the adjustment to the
bandwidth of weight function might improve the accuracy for
the prediction of remainder component. In this article, 12
nearest neighbor stations were selected to interpolate, but it
was necessary to check whether it behaved better when more
or less neighbor stations were included, and whether the fixed
bandwidth (i.e., the neighbor stations were the stations within
the radius of fixed distance) behaved better than the adaptive
bandwidth (i.e., the distance was changeable with the number
of stations, and the bandwidth was set according to the num-
ber) (Fischer and Getis 2010). Fourthly, it remained to answer
if the weight function was reasonable. In this article, the
weight function was only a function of distance, and it
remained to check if other factors included could improve
the accuracy, such as direction and altitude. Finally, as this
research was focused on only the monthly series, it was nec-
essary to make it clear whether the imputation for the series
with higher temporal resolution (e.g., daily series, hourly se-
ries) could still behave well by modifying the parameters of
method.

As the IBDTS method was designed for the data with
strong seasonality and spatial correlation, it was potential to
be applied not only in the field of climatology but also in other
fields as long as the time series had the attributions of strong
seasonality and spatial correlation.

Fig. 6 Box plot of the amplitude
(a) and phase (b) with the cycle
period of 12 months, and the
linear trend (c). The values
represented the differences
between the predicted series and
the original series. The low and
the high edge of the boxes
represented the positions of the
lower quartile (25%) and the
upper quartile (75%),
respectively. The endpoints of the
lines extending vertically from the
boxes represented the positions of
the percentage of 5% and 95%,
respectively. The white lines
across the boxes represented the
medians. Note that the box plots
for IBDTS imputation were not
shown due to zero values

Fig. 7 Relationship between RMSE and the average station distance in
G1. Only the situation of the average station distance of 790 km (at about
medium distance when n2 varied from 5 to 700, described in Section 2.3)
in G2 was shown in the figure. The solid lines represented the mean of
RMSE varied with the increase of distance, and the standard deviation of
RMSE was shown with the shadow regions on the two sides of the solid
lines

An imputation method for the climatic data with strong seasonality and spatial correlation



5 Conclusions

The IBDTS imputation method developed in this article had
taken both of the temporal and spatial information into con-
sideration, which had a relatively small RMSE, MAE, and
MBE in performance, and kept the real attributes of the orig-
inal series, including the amplitude and phase with the cycle
period of 12 months, and the linear trend.

The station distance had an effect on the accuracy of
IBDTS method, with larger RMSE in the areas where the
stations distribution was sparse. The sensibility to station dis-
tance for the IBDTS method was a little stronger than that for
the RNN method but weaker than for the hot-deck and IDW
methods. Compared with the hot-deck and RNNmethods, the
IBDTS method had the ability to deal with the data with none
of or only a few of complete series, e.g., the climatic data in
the early period of instrumental records.

The IBDTS imputation method could be improved in the
future on the aspects of the prediction for each component and
the application for the series with higher temporal resolution.
It was potential to be applied not only in the field of climatol-
ogy but also in other fields as long as the time series had the
attributions of strong seasonality and spatial correlation.
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