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 The occurrence probability of HWs nearly doubled over recent decades, of which 72.9% 

was attributable to GHG and 21.9% to urbanization 

 The occurrence probability of HWs will increase by 11.95 times at 3.5℃ warming, of which 

91% is attributable to human-induced warming 

 The occurrence probability of heatwaves varies by regions, with the highest sensitivity to 

human-induced warming in Southern China 

 

Abstract Urbanization and global warming are the two major drivers of the warming 

environment in cities. The contributions of urbanization and global warming to the past 

occurrence of human-perceived heatwaves (HWs) over China are evaluated in this study. Both 

observations and model simulations show HWs have become more intensive, longer-lasting, 

and more frequent in recent decades. Urbanization and greenhouse gases contribute to 21.9% 

and 72.9% of the intensification of HWs, respectively. The occurrence probability of observed 

human-perceived HWs has doubled over 1961-2012 and is projected to be about 4.36/5.92 

times under the 1.5/2℃ warming relative to the preindustrial level. At the 3.5℃ warming, the 

average duration of HWs is projected to increase to 43.63 days/year, and the occurrence 

probability is expected to increase by 11.95  times, 91% of which is attributable to human-

induced warming. The highest sensitivity of the increases in HWs due to human-induced 

warming is in Southern China. 

Plain Language Summary Both in-situ observations and model simulations show that the 

occurrence probability of human-perceived heatwaves (HWs) nearly doubled in China over 

recent decades, of which urbanization and greenhouse gases contribute to 21.9% and 72.9% of 

the intensification of HWs. When the China warming level reaches 3.5℃respective to the 

preindustrial period, the occurrence probability of HWs is expected to be 11.95-fold than that 

in the preindustrial period. The contribution of human-induced warming to the increase in 
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occurrence probability of HWs would be 91%. Southern China is the region where the 

intensification of HWs is most prominent due to human-induced warming. Increased 

adaptation and mitigation efforts are needed in China specifically Southern China to offset the 

increasing HWs due to urban expansion and anthropogenic activities. 

 

Keywords: Human-perceived heatwaves; Global warming; Urbanization; Attributions; China 

 

1. Introduction 

Heatwaves (HWs) potentially pose threats on many different aspects of the society and 

ecosystems, such as public health, food security, energy production, and distribution, and 

ecosystem sustainability (Frölicher et al., 2018; He et al., 2018; McMichael et al., 2006; Yuan 

et al., 2016). Persistent HWs not only directly lead to heat-caused morbidity and mortality (e.g. 

heat stroke), but also indirectly raise the incidence of heat-related psychological and chronic 

diseases (e.g. insomnia, fatigue, cardiovascular and respiratory diseases) (Kang & Eltahir, 2018; 

Li et al., 2018; McMichael et al., 2006; Stott et al., 2004; Tan et al., 2007; Z. Xu et al., 2016). 

Rapid urbanization especially in the developing world over the recent decades exacerbates the 

warming of urban environment by urban heat island effects on one hand and raises the health 

risks in cities due to the fast-paced growth of urban population on the other hand (Manoli et al., 

2019). As the most populated country of the world, China has experienced the fastest and most 

intensive urbanization over the recent decades, suggesting the non-neglectful impacts of 

urbanization on the intensification of HWs in Chinese cities despite global warming.  

HWs in China have become more frequent and severe (Su & Dong, 2019), especially since 

the mid-1990s. Several record-breaking HW events attacked China in recent decades, such as 

the July-August 2013 HW event in eastern China and the 2015 summer HW event in western 

China (Su & Dong, 2019). The 2013 summer HW event was the hottest on records in eastern 
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China (Sun et al., 2014). This persistent HW event lasted for more than 30 days and the 

regionally averaged surface air temperature was 1.89°C above the 1961–90 climatology (Ma 

et al., 2017), causing 5758 cases of HW-related illness (Gu et al., 2016). Subsequently, the 

2015 summer HW event registered the hottest summer in western China with the highest 

temperature of 47.7°C and the daily maximum temperature above 38°C covering an area of 

about 753,000 km2 during 12 June – 10 August (Sun, Song, et al., 2016). Given the increasing 

threats of HWs, it is of great importance to understand and quantify the causes of the 

intensification of HWs.  

Several studies have attributed the recorded HWs to anthropogenic forcing (Meehl et al., 

2007; Rahmstorf & Coumou, 2011; Su & Dong, 2019; Sun et al., 2014; Xu et al., 2018). On 

the other hand, rapid urbanization alters the surface energy budget and results in higher 

temperature in urban areas than rural areas, i.e. urban heat island effects (Wang et al., 2017). 

Therefore, urbanization brings about additional increases in air temperature in cities on top of 

those induced by anthropogenic greenhouse gases forcing (GHG) (Zhang et al., 2015; Zhang 

et al., 2011). The impacts of urbanization on the observed HWs were not well considered in 

previous studies, which potentially caused the overestimation of the contribution of GHG 

forcing. This is particularly the case in China, as most of the stations from the meteorological 

observation network of China are located in urban or urbanizing areas, although urban areas 

only account for less than 5% of the land area in China (Ren et al., 2015). Thus, several recent 

studies suggested that urbanization contributes a third of observed warming in China (Ren et 

al., 2008; Sun, Zhang, et al., 2016; Zhang et al., 2011) and is a key contributor of the 

unprecedented HWs in eastern and southern China (Liao et al., 2018; Luo & Lau, 2017, 2018; 

J. Wang et al., 2017; Ye et al., 2018; Zhang et al., 2011).  

Although it has been qualitatively proven that the observed intensification of HWs over 

China is the joint effects of global warming and urbanization (Luo & Lau, 2017; Su & Dong, 
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2019; Sun, et al., 2016), limited studies so far have been conducted to quantify the individual 

contributions of these two drivers to the changes in HWs. What's more, previous attribution 

researches mainly focus on the air temperature-based HW. But the heat index-based HW, also 

known as the human-perceived HW, has a direct link to the heat stress that human body really 

perceives (Li et al., 2018; Mora et al., 2017; Russo et al., 2017). In this study, we employ the 

optimal fingerprint method and the fraction of risk attributable method, two widely used 

“Detection and Attribution methods” (Allen & Stott, 2003; Allen & Tett, 1999; Fischer & 

Knutti, 2015), to analyze the attribution of changes in human-perceived HW characteristics, 

i.e. duration, maximum intensity, cumulative intensity, and frequency, to global warming and 

urbanization, and based on the attribution analysis to project the future progression of HWs.  

  

2. Data and Methods 

2.1 Site observations 

Historical in-situ daily surface air mean temperature (𝑇𝑚𝑒𝑎𝑛) and daily relative humidity 

(RH) of 2,419 meteorological stations over the period of 1961-2012 were used in this study. 

The meteorological observations are obtained from the National Meteorological Information 

Center, China Meteorological Administration (CMA). The raw temperature and RH data were 

quality-controlled and homogenized by the method of Xu et al., (2013) in software RHtest 

(Wang & Feng, 2013) to eliminate non-climatic variations induced by changes in 

instrumentation, local site condition, environment, etc. (Vincent et al., 2012).  

Similar as Liao et al., (2018), We classify 2,419 meteorological stations into urban and 

rural stations according to the dynamic land use/land cover (LULC) data, which is generated 

from Landsat TM/ETM+ images with a resolution of 30m, and is available at the Data Center 

for Resources and Environmental Sciences, Chinese Academy of Sciences 

(http://www.resdc.cn/data.aspx?DATAID=95). Those LULC data are only available in 1980, 

http://www.resdc.cn/data.aspx?DATAID=95
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1990, 1995, 2000, 2005, and 2010. Correspondingly, the researching period (1961-2012) is 

divided into 1961-1980, 1981-1990, 1991-1995, 1996-2000, 2001-2005, and 2006-2012, and 

each subperiod shares the same LULC data. A station is classified as urban if the percentage 

of buildup area of its corresponding 2-km circular buffer is greater than 33%. Otherwise, it is 

classified as a rural station. The spatial distribution of identified urban and rural stations in 

1980, 1990, 1995, 2000, 2005, and 2010 is presented in Figure 1. There are 332 urban stations 

in 1980, and the number grows into 1,022 in 2010. 

China is further divided into 5 5   latitude-longitude grids to identify the urbanization 

effect (Liao et al., 2018; Sun, Zhang, et al., 2016). Only those 5 5  grids with at least one 

rural and one urban station inside are considered. Finally, 39 grids are selected. The 

observational data in these selected 5 5  grids have complete coverage over mainland China 

and can be matched to CMIP5 General Circulation Models (GCMs) outputs. In each grid cell, 

HW characteristics are first calculated for each station individually, and then the urban (rural) 

stations inside the grid cell are averaged to generate the grid-level urban (rural) HW 

characteristics (abbreviated as OBSurban and OBSrural respectively). Both urban and rural stations 

within the grid cell are averaged to get the grid-level HW characteristics over China 

(abbreviated as OBSwhole) (Liao et al., 2018). 

2.2 Coupled Model Intercomparison Project Phase 5 (CMIP5) data 

Responses of HWs to external forcings including historical forcing (anthropogenic and 

natural forcings, ALL), external natural forcing only (solar and volcanic combined, NAT), and 

greenhouse gases forcing only (GHG) are evaluated in this study based on the outputs of GCMs 

from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The unforced preindustrial 

control (piControl ) runs are used to quantify the internal variability. 𝑇𝑚𝑒𝑎𝑛 and specific 

humidity (q) of GCMs during 1961-2012 are analyzed (Table 1). For GCM ALL simulations 

ending in 2005, we extend them by corresponding Representative Concentration Pathway 
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(RCP) 4.5 simulations during 2006-2012, as the RCP4.5 simulations match the current 

economic developing path best (Sun, Zhang, et al., 2016). For NAT and GHG simulations, we 

only select simulations that cover the period of 1961-2012. RCP2.6 and RCP8.0 scenarios 

covering the end of the 21st century, are used to analyze the future progression of HWs. RCP2.6, 

RCP4.5 and RCP8.0 represent radiative forcings of +2.6, +4.5, and + 8.5 W/m2 in the year 

2100 to preindustrial values, respectively. In this study, we only choose the first ensemble of 

the simulation runs (“r1i1p1”) to conduct our analyses, so that all models have the same weight 

when we calculate the multi-model ensemble mean. 

2.3 Definition of human-perceived HWs 

Heat index (HI, in ℃), also known as the apparent temperature, has a direct link to the heat 

stress that human body really perceives (Li et al., 2018; Mora et al., 2017; Russo et al., 2017). 

HI is employed to define HW events in this study, which is calculated by the Rothfusz 

regression (Li et al., 2018; Luo & Lau, 2018; Rothfusz & Headquarters, 1990):  
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where T is the land surface air temperature (in ℃) and RH is the relative humidity (in %). 

Further adjustments are applied to HI when RH < 13% and 26.7° < T < 44.4 °C, and when RH > 

85% and 26.7 °C < T < 30.6 °C (Luo & Lau, 2018) 

(https://www.wpc.ncep.noaa.gov/html/heatindex_equationbody.html). Because only a few 

CMIP5 GCMs have daily RH simulation directly. RH is derived from actual specific humidity 

(q), and is equal to the ratio of q to saturated specific humidity (𝑞𝑠𝑎𝑡). Furthermore, 𝑞𝑠𝑎𝑡 is 

estimated by Tetens’ formula (Buck, 1981): 
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where 𝑒𝑤 is the land surface saturated vapor pressure, 𝑃𝑎 is the land surface air pressure, Pa is 

treated as a constant value 1020 hPa in this study. 

Human-perceived HWs are defined as days with HI > a specified threshold (hereafter, 

HWs in this study are referred to human-perceived HWs if without specific instruction). The 

thresholds are the percentiles of daily HI at each grid during the last 200 years of piControl 

simulations (Fischer & Knutti, 2015; Frölicher et al., 2018) in the future HWs analysis (Figures 

6-11). When comes to historical HWs analysis in Figures 3-5, for fair comparison, both of the 

observed HWs and GCMs simulated HWs used the percentiles of daily HI during 1961-1990. 

Without special instruction, the threshold refers to the 99% quantile in this study. We also used 

other thresholds (e.g. 90%, 95%, 99.9% and 99.99%) to test the robustness of our study in 

Figure 8. The same piControl simulations over the last 200 years are also used to define the 

reference temperature relative to which warming level reaches. We further quantify the 

following HW characteristics, including maximum intensity (HWI, in units of ℃, maximum 

temperature anomaly with respect to a threshold over the HW period), duration (HWD, in units 

of days, number of days of temperature exceeding a threshold), cumulative intensity (HWCI, 

in units of ℃, mean intensity multiplied by duration), and frequency (HWF, the number of HW 

events of a year) (Figure 2).  

2.4 Detection and attribution methods 

The contribution of urbanization to increases in HWs is defined as the difference of trends 

in area-averaged time series of each HW characteristic between urban and rural areas 

(namely Trend𝑢𝑟𝑏𝑎𝑛 − Trend𝑟𝑢𝑟𝑎𝑙). Afterward, the percentage of urbanization contribution is 

defined as Eq. 3 (Luo & Lau, 2018; Ren & Zhou, 2014). The contribution of urbanization to 

HW characteristics 𝑂𝐵𝑆𝑤ℎ𝑜𝑙𝑒 is quantified by Eq. 4. 

𝑅𝐶𝑢𝑟𝑏𝑎𝑛 =
𝑇𝑟𝑒𝑛𝑑𝑢𝑟𝑏𝑎𝑛 − 𝑇𝑟𝑒𝑛𝑑𝑟𝑢𝑟𝑎𝑙

𝑇𝑟𝑒𝑛𝑑𝑢𝑟𝑏𝑎𝑛
,   (3)  

𝐶𝑢𝑟𝑏𝑎𝑛 = 𝑇𝑟𝑒𝑛𝑑𝑤ℎ𝑜𝑙𝑒 × 𝑅𝐶𝑢𝑟𝑏𝑎𝑛, (4)  



 

 

©2020 American Geophysical Union. All rights reserved. 

where 𝑇𝑟𝑒𝑛𝑑𝑢𝑟𝑏𝑎𝑛, 𝑇𝑟𝑒𝑛𝑑𝑟𝑢𝑟𝑎𝑙 and 𝑇𝑟𝑒𝑛𝑑𝑤ℎ𝑜𝑙𝑒 are linear trends of 𝑂𝐵𝑆𝑢𝑟𝑏𝑎𝑛, 𝑂𝐵𝑆𝑟𝑢𝑟𝑎𝑙 and 

𝑂𝐵𝑆𝑤ℎ𝑜𝑙𝑒 respectively. 

The separate contributions of external forcing factors, i.e. ALL, GHG and NAT, to the 

increasing HWs are quantified by the optional fingerprinting method (Allen & Stott, 2003; 

Allen & Tett, 1999), which has been widely applied to detect anthropogenic contributions to 

changes in temperature, precipitation, soil moisture (Chen & Sun, 2017; Gu et al., 2019; Sun 

et al., 2016). This method assumes that Y (the observation signal) is the sum of scaled 

fingerprints X plus the internal variability:  

𝐲 = ∑ 𝐱𝑖

𝑚

𝑖=1

𝛽𝑖 + 𝑣 = 𝐗𝛽 + 𝑣, (5)  

where 𝑦  is the rank‐𝑛  vector of observations, the 𝑚  columns of 𝑋  are the climate model‐

simulated response patterns, and 𝑣 is the regression residual or internal variability of 𝑦. The 

scaling factor 𝛽 is the pattern-amplitude, and can be estimated by the ordinary least squares 

(OLS) method (Allen & Tett, 1999). A fingerprint signal is detectable if its scaling factor is 

positive and its 90% uncertainty range excludes zero. The fingerprint method used in this study 

is the same as employed in Gu et al., (2019). The description of this method is derived from 

there with minor modification. We conducted one-signal and two-signal detection and 

attribution analyses, respectively. One-signal analysis involving only one external forcing each 

time, shows whether a certain forcing is presented in the observations. Two-signal analysis 

including two external forcings (i.e. GHG and NAT) in X, can separate the responses of the 

two forcings (Wen et al., 2013).  

In the fingerprint method, the attributable HW changes to external forcings can be 

quantified by Eq. 6.  

�̂�𝑥 = β𝑥 × trend𝑥 × n, (6)  
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where �̂�𝑥 is the estimated attributable changes to external forcing (x, i.e. GHG, NAT and ALL 

forcings in this study), β𝑥  is the regression coefficient of corresponding external forcing 

estimated in the optional fingerprinting method, trend𝑥 is the linear trend of external forcing 

over 1961-2012, and n is the length of year over 1961-2012 (i.e. 52). In the fingerprinting 

method, the urbanization effects are not considered and the observed HWs from rural stations 

is regressed on external forcings. Similar as Yuan et al. (2018), to reconcile the contributions 

of external forcings to observed HW characteristics averaged by both urban and rural stations 

over China (OBSwhole), we further adjust the contributions of external forcings according to the 

contributions of urbanization: 

𝑐𝑜𝑒𝑓𝑎𝑑𝑗 =
𝐶𝐴𝐿𝐿

�̂�𝐴𝐿𝐿

=
𝐶𝑤ℎ𝑜𝑙𝑒 × (1 − 𝑅𝐶𝑢𝑟𝑏𝑎𝑛)

�̂�𝐴𝐿𝐿

, (7) 

�̂�𝑥,𝑎𝑑𝑗 = �̂�𝑥 × 𝑐𝑜𝑒𝑓𝑎𝑑𝑗 , (8) 

where �̂�𝐴𝐿𝐿 is the estimated attributable changes to ALL forcing in Eq. 6, 𝐶𝑤ℎ𝑜𝑙𝑒 is the change 

in OBSwhole over 1961-2012 (i.e.  whole wholeC Trend n ), 𝑅𝐶𝑢𝑟𝑏𝑎𝑛  is the contribution of 

urbanization, and 𝑐𝑜𝑒𝑓𝑎𝑑𝑗  is the adjustment coefficient which is used to adjust the attributions 

of external forcing (i.e. �̂�𝑥, the attributions of GHG, NAT, and ALL forcings estimated in Eq. 

6).  

Based on RCP simulations, the comprehensive influence of anthropogenic drivers (ozone 

depletion, land-use change, aerosols, and greenhouse gases) on future HWs progression are 

investigated by two metrics, i.e. the probability ratio (PR) and fraction of attributable risk 

(FAR), which have been widely used to attribute climate extreme changes (Allen, 2003; Chen 

& Sun, 2017; Fischer & Knutti, 2015; Frölicher et al., 2018; Stott et al., 2004).  

PR =
𝑃1

𝑃0
, 𝐹𝐴𝑅 = 1 –

1

PR
= 1 –

𝑃0

𝑃1
,   (9)  

where P1 is the probability of HW events at any given point of time (e.g. today) and P0 is the 

probability of HW events during preindustrial period. PR represents the probability that a HW 
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event has changed. FAR quantifies the fraction of a HW event attributable to human-induced 

warming (Allen, 2003; Chen & Sun, 2017; Frölicher et al., 2018). 

 

3. Results 

Figure 3 shows temporal changes in annual area-averaged HW indices of in-situ 

observations and ALL forcing-based GCM simulations during 1961-2012. The magnitudes of 

GCM-simulated changes are consistent with those of observed HWs. The observed HWD, 

HWF and PR are in the 5%-95% interval of the GCM-simulated (Figures 3a, 3b and 3e), 

indicating that GCMs can adequately reproduce the observed HW variations. Being slightly 

overestimated, the GCMs simulated HWI and HWCI are less reliable than HWD, HWF and 

PR (Figures 3c-3d). The five GCM-simulated HW indices in present-day 1991-2012 almost 

double from that in earlier period 1961-1990. Over 1961-2012, the modeled HWD, HWF, HWI, 

HWCI, and PR increase significantly (p < 0.01) by 1.10±0.46 day/decade, 0.42±0.17 

times/year/decade, 0.18±0.08 ℃/decade, 1.47±0.57 ℃/decade, and 0.30±0.13/decade, 

respectively, implying that the signal of increasing HWs is strong enough to be detected from 

the internal noise. 

With the warming temperature, HWs become significantly longer, stronger and more 

frequent in both urban and rural areas (p < 0.01), and the slopes of increases in all HW indices 

are faster in urban areas than those in rural areas. Specifically, over these 52 years, annual 

HWD, HWF, HWI and HWCI of observed urban HWs increase by 4.0 days (90% confidence 

interval, 2.7-5.4), 1.5 times/year (1.0-2.0), 0.77℃ (0.28-1.31), and 5.48℃ (3.53-7.94), 

respectively, while these values for observed rural compound HWs are 3.1 days (1.8-4.4), 1.2 

times/year (0.7-1.7), 0.53℃ (0.10-1.03), and 3.90℃ (2.00-5.98), respectively. Additionally, 

the occurrence probability of HWs increases by 0.24±0.04/decade in urban areas, and the value 

for rural areas is 0.19±0.04/decade (Figure 3e). 



 

 

©2020 American Geophysical Union. All rights reserved. 

We further quantify the contribution of urbanization to the changes in observed HWs 

(Figure 4). For HWD, HWF, HWI, HWCI and PR of compound HWs over 1961-2012, 

attributable changes to urbanization are 0.77 day, 0.24 times/year, 0.20℃, 1.40 ℃, and 0.21 

respectively, which account for 22.5%, 17.8%, 31.7%, 29.6 % and 21.9% of total changes. The 

magnitude of the urbanization contribution is in agreement with previous studies. For example, 

Ren et al., (2015) found that urbanization contributes 24.9% of the surface air temperature 

warming trend in China during 1961-2004. Sun et al., (2016) reported that urbanization 

contributes 1/3 of the observed warming in China during 1961-2013. In comparison, 

urbanization contributes 31.7 for HWI in our study. Luo & Lau (2018) found that urbanization 

contributes 24.3% to the frequency of extreme heat stress day over eastern China. While from 

eastern China to western China where the climate becomes arid, the contribution of 

urbanization to the increasing HWs becomes smaller and even negative (Liao et al., 2018). 

Hence, in our study, the contribution of urbanization to China HWF (i.e. 17.8%) is slightly 

smaller than that of Luo & Lau (2018). 

To isolate urbanization effect from external forcings, observed HWs in rural stations were 

treated as the response variable (i.e. y in Eq. 5) to regress for individual forcings (i.e. ALL, 

GHG, or NAT). The scaling factors of ALL and GHG are positive and their 90% confidence 

intervals are above zero for HWD, HWF, HWI, and PR, indicating that the fingerprint of these 

external forcings can be detected in observed HWs (left panel of Figure 4). The scaling factors 

of ALL forcing are almost equal to 1, which again indicates consistency between site 

observations and the model simulated response (Wan et al., 2015). However, the scaling factor 

ranges of GHG forcing are only half of ALL forcing, suggesting that the multimodel ensemble 

HWs in China response to GHG forcing are generally overestimated. This is consistent with 

other studies, such as Wen et al. (2013) and Sun et al. (2016). However, when comes to HWCI, 

ALL and GHG are only detectable under the 85% confidence level. This may be induced by 
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that GCMs performs worse in simulating HW intensity and cumulative intensity than in 

simulating HW duration and frequency (Figures 3c-3d), which introduce extra uncertainty in 

the fingerprint regression.  

As the changes in observed HW characteristics can be influenced by multiple forcings 

(Chen & Sun, 2017; Gu et al., 2019; Wen et al., 2013), two-signal analysis is applied to detect 

whether GHG forcing can be separated from NAT (Figure 5). Consistent with one-signal 

analysis, except for HWI, the GHG scaling factors are still significantly greater than zero for 

HWD, HWF and PR. These results suggest that GHG signal is still detectable for the observed 

HWD, HWF and PR over China when separating the influence of NAT. 

Attributable changes to these external forcings are quantified by computing trends in ALL, 

GHG and NAT and then multiplying them by the corresponding scaling factors (Figure 4, right 

panels). “OBS” in Figure 4 indicates changes in observed HW characteristics averaged by both 

urban and rural stations (OBSwhole) over 1961-2012. The attributions of external forcings are 

estimated based on observed rural HWs, and thus are adjusted according to the contributions 

of urbanization to make them comparable to the observed HWs in the whole China (𝑂𝐵𝑆𝑤ℎ𝑜𝑙𝑒) 

(Eq. 8). For 𝑂𝐵𝑆𝑤ℎ𝑜𝑙𝑒 HWs over 1961-2012, the HWD, HWF, HWI, HWCI and PR increase 

by 3.4 days (2.2-4.8), 1.3 times/year (0.8-1.8), 0.64℃ (0.21-1.12), 4.72℃ (2.75-6.88) and 0.96 

(0.61-1.34) respectively, of which 72.4%, 74.1%, 68.7%, 60.7%, and 72.9% are attributable to 

GHG forcing. Our results of contributions of these external forcings are consistently lower than 

those detected in previous studies without considering the urbanization effects. For example, 

Wen et al. (2013) attributed 89% and 95% of observed annual warmest day and night 

temperature to GHG forcing, while the GHG attributes 68.7% for HWI in our study. 

We further extend the time evolution of HW characteristics to the future by the RCP2.6 

and RCP8.5 scenarios (Figure 6). The difference of HW characteristics under RCP2.6 and 

RCP8.5 is measurable after the 2030s. Under RCP2.6, HW characteristics reach the maximum 
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in the 2050s, and then become stable afterward. Under RCP8.5, HW characteristics increase 

exponentially over the 21st century and are substantially higher than those under RCP2.6. For 

example, at the end of the 21st century, mean HWD, HWF, HWI, HWCI and PR of compound 

HWs over China are projected to be 78.1 days, 10.0 times/year, 11.1℃, 365.7℃ and 21.43 

under RCP8.5, respectively, while the values are 23.5 days, 7.0 times/year, 4.5℃, 45.2℃ and 

6.43 under RCP2.6, respectively. These results imply a strong connection between human-

induced warming and increases in HWs. 

We also used the RCP scenarios to estimate the response of future HW characteristics to 

different level warmings and the overall contribution of global warming and urbanization to 

the future increasing HWs by FAR (Figure 7). For HWs exceeding the 99th percentile of the 

preindustrial period, the mean duration of HWs in the preindustrial period is 4.0 days (3.2-5.5), 

the mean intensity is up to 2.0℃ (1.5-2.8), and the cumulative intensity is 6.6℃ (4.6-9.0). On 

average, the HWs are projected to last for 43.6 days (32.3-54.5) and have a cumulative intensity 

of 117.3℃  (80.4-146.2) under 3.5℃  warming (Table 2). Meanwhile, compared to the 

preindustrial level, the occurrence probability of observed HWs doubled over 1961-2012, and 

is projected to be 4.36-fold (3.03-5.70), 5.92-fold (4.05-7.95)  and 11.95-fold (8.84-14.94) 

under 1.5℃, 2℃ and 3.5 ℃ warming levels, respectively (Table 3). Because of the large 

increase in the occurrence probability with human-induced warming, the simulated FAR—that 

is, the human contribution to the probability of an event—reaches 91% at 3.5℃ warming level. 

When higher quantiles are taken as the thresholds to define HWs, larger occurrence probability 

with warming is estimated (Figure 8). For example, at the 3.5℃ warming level, PR defined by 

the 99th percentile is about 11.95 (8.84-14.94), and it is raised to 300.22 (106.00-486.78)  when 

the 99.99th percentile is taken as the threshold. 

RCP scenarios include the natural forcings (e.g. solar changes and volcanic eruptions) and 

anthropogenic forcings (e.g. aerosols, ozone depletion, land cover changes and GHG) and are 
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dominated by GHG at the end of 21st century (Marvel et al., 2019). RCP scenarios take land 

cover changes into account. Known that urbanization is a part of land cover changes, hence, 

RCP scenarios can simulate the urbanization effect. But due to the coarse resolution in the 

GCMs, the ability in simulating the urbanization effect in GCMs might be limited. In the results 

of fingerprint regression (Figure 4), we know that GHG is the dominant factor in the increasing 

HWs, which contributes to 72.9% of the increasing HWs in China during 1961-2012. Hence, 

the weak ability of simulating urbanization effect in GCMs will have a relatively small 

influence on future HW characteristics. On the other hand, in Figure 7, we can conclude that 

the increase of HW characteristics under different warming levels is independent of developing 

path (i.e. RCP2.6 or RCP8.5), and only the extent of temperature warming matters. Even 

though GCMs have limited ability in simulating urbanization impact, it only impacts the 

reaching time of certain warming level and will not alert the correlation of the increase of HW 

characteristics and warming level, and will not change the overall contributions of 

anthropogenic forcings to the increasing HWs at certain warming level. 

Although the occurrence probability of HWs is projected to increase across China, the 

changes in occurrence likelihood vary in spatial (Figures 9-10). HWs of low-latitude regions 

are more sensitive to human-induced warming than the high-latitude regions. Because the 

increase of PR in low-latitude regions is substantially higher than that of high-latitude regions 

under the same warming level (Figure 9). We selected six representative regions which are 

across different latitudes and have a distinguished pattern of PR and FAR responding to 

different warming levels (Figures 9-10), and presented the evolution of simulated changes of 

PR and FAR under different levels of warming (Figure 11). The occurrence likelihood of HWs 

in those six representative regions (A) Northeastern China, (B) XinJiang, (C) Beijing-Tianjin-

Hebei, (D) XiZang, (E) Central China, (F) Southern China are about 1.61, 1.68, 1.91, 2.71, 

2.85 and 4.32 respectively at the present-day warming. Those numbers grow into 5.85, 6.62, 
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8.24, 12.2, 13.4 and 29.9 for the same regions at the 3.5℃ warming level (Figure 11a). 

Meanwhile, 79%, 83%, 86%, 91%, 92% and 97% of the HW changes in those regions can be 

attributed to human-induced warming at the 3.5℃ warming level (Figure 11b). Southern China 

is the region most sensitive to the increasing temperature (Figures 9d and 10d), where the 

occurrence likelihood of HWs will be 29.9-fold as the preindustrial period at the 3.5℃ warming 

level. The HWs in northern China (especially for Northeastern China) is relatively less 

sensitive to the impacts of human-induced warming, where the changes in PR are mainly in the 

range of [1, 2] (Figure 9a) and less than 6% of the changes are attributed to human-induced 

warming at the present-day warming (Figure 10a). Even so, when the temperature increases to 

3.5 ℃, the PR in Northeastern China would increase to 5.85 and the contribution of human-

induced warming would increase to 79.0%. As human activities become stronger, essentially 

all HWs over China are due to human-induced warming at 3.5 ℃ warming level (Figures 10 

and 11b).  

 

4. Conclusions  

Stronger, longer and more frequent human-perceived HWs are observed in China over the 

past five decades (i.e. 1961-2012). The duration, maximum intensity, cumulative intensity, and 

frequency of HWs show significantly increasing trends (p < 0.01), while the magnitudes of 

increases vary obviously between urban and rural areas. The increase in occurrence probability 

of HWs is higher in urban areas than in rural areas (i.e. 0.24±0.04/decade vs 0.19±0.04/decade). 

Quantitative attribution analysis shows that urbanization contributes to 17.8%-31.7% (with an 

average 23.4%) of the increases in HWs over China, which is in line with the consensus (about 

20%-30%) reached by previous studies (e.g. Luo & Lau, 2018; Ren et al., 2015; Sun, Zhang, 

et al., 2016). 
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Besides the impacts of urbanization, anthropogenic GHG forcing is the dominant factor 

controlling the increases of HWs over China. Based on the acceptable ability of CMIP5 GCMs 

in reproducing changes in HWs, our detection and attribution analyses show that the GHG 

signal is detectable (in the confidence level of 90%) in the increases of observed HWs. 69% 

(60.7-74.1%) of observed increases in HWs can be explained by GHG forcing, validating that 

anthropogenic climate change is the major driver of the increases in the occurrence likelihood 

of HWs over China in the recent decades.  

As warming is expected to continue in the future, the contributable fraction of human-

induced warming to the increases of HWs is expected to increase remarkably. At the 3.5℃ 

warming level, the occurrence likelihood of HWs exceeding the 99% quantile would increase 

to 11.95 times of that in the piControl runs, and human-induced warming contributes to 91% 

of the increases. The occurrence likelihood of extreme HWs exceeding the 99.99% quantile is 

projected to increase at a more substantial rate. The likelihood is expected to be 300.22 times 

of that in the piControl runs, and almost all of the increase is attributed to human-induced 

warming at the 3.5℃ warming level. The responses of HWs to human-induced warming vary 

by region over China, and the increases in the occurrence probability of HWs in Southern China 

are the most sensitive to future warming compared to other regions.  
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Figure 1. The distribution of rural and urban meteorological stations in different years. The 

grey grids are the selected 5 5   grids which include at least one rural and one urban station. 
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Figure 2. Delineation of human-perceived HW characteristics in this study. Hereafter, HWs 

are refered to human-perceived HWs if without specific instruction. HWs are identified as days 

with daily HI exceeding a specified threshold for successive days. Intensity (HWI) is the 

difference between the peak HI and the threshold. Duration (HWD) corresponds to the length 

of a HW cluster in days. Cumulative intensity (HWCI) is defined as the sum of the differences 

between the HI and the threshold over the HW period. Frequency (HWF) is the number of 

clusters a year. 
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Figure 3. Temporal changes of (a) HWD, (b) HWF, (c) HWI, (d) HWCI, and (e) PR of 

observed and ALL simulated HW over the period of 1961-2012. HW is defined as days with 

HI > the 99% quantile of daily HI over the period of 1961-1990 for ALL simulations. The black 

dash line represents the multi-model ensemble mean. The grey shading shows the 5%-95% 

interval of the CMIP5 models. Blue (red) bold line is the linear trend of China area-weighted 

average of grid-level OBSrural (OBSurban). For “Urban” and “Rural”, slope uncertainties are 

estimated as the standard deviation of 1000-times bootstrapping samplings. For “Models”, 

slope uncertainties are estimated as standard deviation among multiple CMIP5 models. 
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Figure 4. The best estimated one-signal scaling factors by OLS fingerprint method (left) and 

attributable changes (right) of area-weighted OBSwhole HW characteristics over the period of 

1961-2012. “OBS” indicates changes in observed HW characteristics averaged by both urban 

and rural stations (OBSwhole) over 1961-2012. Attributable changes to ALL are from the one-

signal analysis, and to GHG and NAT are from the two-signal analysis. Error bars indicate 

their corresponding 5-95% uncertainty intervals for each signal. For “OBS” and “Urban”, 

uncertainties are estimated as 5-95% intervals of 1000-times bootstrapping samplings. 
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Figure 5. Two-signal scaling factors for HW changes from the OLS method and corresponding 

5-95% confident intervals. In each panel, the shadows are the 5-95% joint confidence intervals 

of scaling factors. 
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Figure 6. Temporal evolutions of HW characteristics over the period of 1861-2100, including 

area-aggregated (a) HWD, (b) HWF, (c) HWI, (d) HWCI, (e) PR and (f) FAR of HWs 

exceeding the 99% quantile of the last 200-years HI of Picontrol simulations. The thinner lines 

represent individual model projections, whereas the thicker lines represent multi-model 

averages of the RCP 2.6 and 8.5 scenarios. The historical simulations are extended to 2100 by 

combining the RCP 2.6 and RCP 8.5 simulations. The time series are smoothed with a 20-year 

running mean. The same as below. 
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Figure 7. Simulated changes of HW characteristics for different levels of warming, including 

area-aggregated (a) HWD, (b) HWF, (c) HWI, (d) HWCI, (e) PR and (f) FAR of HWs 

exceeding the 99% quantile of the last 200-years HI of Picontrol simulations. In all panels, the 

simulated HW characteristics are plotted against simulated China Tmean changes relative to 

that of 1861–1880. 
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Figure 8. Simulated changes of HW characteristics for different warming levels and different 

thresholds. The lines represent the multi-model ensemble mean. The shading areas indicate the 

5%-95% interval of individual models. Only simulations under the RCP8.5 scenario are shown 

here. 
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Figure 9. Spatial distribution of PR of HWs exceeding the 99% quantile of the last 200 years 

in Picontrol simulations at different warming levels. Six representative regions are selected to 

explore the temporal evolution of HWs to different levels of warming in Figure 10. A: 

Northeastern China, B: XinJiang, C: Beijing-Tianjin-Hebei, D: XiZang, E: Central China, F: 

Southern China. 
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Figure 10. Spatial distribution of FAR of HWs exceeding the 99% quantile of the last 200 

years in Picontrol simulations at different warming levels. 
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Figure 11. Simulated changes of (a) PR and (b) FAR under different levels of warming at six 

representative regions selected in Figure 9. The four vertical dash lines in each subplot present 

the present-day, 1.5℃, 2℃and 3.5℃warming levels. A: Northeastern China, B: XinJiang, C: 

Beijing-Tianjin-Hebei, D: XiZang, E: Central China, F: Southern China. 
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Tables 

Table 1 List of GCMs and the number of 52-year chunks for the piControl simulations 

used in this study. The “piControl” row indicates the number of 52-year chunks in the 

corresponding GCM and the number “1” in the last three “RCP” rows indicates the simulations 

are available in the corresponding GCM. 

Model 

A

LL 

GH

G 

N

AT 

piCont

rol 

RCP

2.6 

RCP

4.5 

RCP

8.5 

ACCESS1-0 1   8  1 1 

ACCESS1-3 1   8  1 1 

BNU-ESM 1   10 1 1 1 

CNRM-

CM5 

1 1 1 16 1 1  

CanESM2 1 1 1 20 1 1 1 

GFDL-

ESM2G 

1   8 1 1 1 

GFDL-

ESM2M 

1   8 1 1 1 

HadGEM2-

CC 

1   4  1 1 

HadGEM2-

ES 

1   10 1 1 1 

IPSL-

CM5A-LR 

1 1 1 18 1 1 1 

IPSL-

CM5A-MR 

1  1 4 1 1 1 

IPSL-

CM5B-LR 

1   4  1 1 

MIROC-

ESM 

1   12 1 1 1 
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MIROC-

ESM-CHEM 

1   4 1 1 1 

MIROC5 1   12 1 1 1 

MRI-

CGCM3 

1   8 1 1 1 

NorESM1-

M 

1 1 1 8 1 1 1 

bcc-csm1-1 1 1 1 8 1 1 1 

bcc-csm1-1-

m 

1   6 1 1 1 

inmcm4 1   8  1 1 

Total 

realizations 

20 5 6 184 15 20 19 

Total 

models 

20 5 6 20 15 20 19 
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Table 2 Simulated HWD, HWF, HWI, and HWCI of human-perceived HWs exceeding 

the preindustrial 99th percentile over China for different warming levels. 

Warmin

g (°C) 

HW

D (days) 

HW

F 

HWI (°C) HWCI (°C) 

0.85 

9.36 

(7.30, 

13.20) 

4.16 

(2.84, 

4.69) 

2.68 (2.15, 

3.70) 13.97 (10.29, 22.38) 

1.5 

15.92 

(11.07, 

20.80) 

5.78 

(4.24, 

6.57) 

3.46 (2.81, 

4.51) 26.00 (18.51, 36.41) 

2 

21.60 

(14.80, 

29.02) 

6.80 

(5.22, 

7.94) 

4.24 (3.38, 

5.14) 41.07 (27.55, 52.97) 

3.5 

43.63 

(32.29, 

54.53) 

8.91 

(7.39, 

11.08) 

6.69 (5.15, 

8.03) 

117.28 (80.37, 

146.16) 

Note: Multi-ensemble mean estimates are shown, and the associated 5%-95 interval of 

model estimates are given in parenthesis. 
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Table 3 Simulated PR and FAR over China for different warming levels and different 

preindustrial thresholds (99th and 99.99th percentiles). 

Warmin

g (°C)    

99th percentile 99.99th percentile  

PR FAR PR FAR 

0.85 

2.56 (2.00, 

3.65) 

0.53 (0.35, 

0.68) 

12.15 (5.05, 

22.01) 

0.77 (0.51, 

0.89) 

1.5 

4.36 (3.03, 

5.70) 

0.75 (0.61, 

0.81) 

34.38 (13.37, 

65.11) 

0.95 (0.80, 

0.97) 

2 

5.92 (4.05, 

7.95) 

0.82 (0.73, 

0.87) 

64.54 (21.30, 

119.05) 

0.98 (0.89, 

0.99) 

3.5 

11.95 (8.84, 

14.94) 

0.91 (0.88, 

0.93) 

300.22 (106.00, 

486.78) 

1.00 (0.98, 

1.00) 

Note: Multi-ensemble mean estimates are shown, and the associated 5%-95 interval of 

model estimates are given in parenthesis. 

 


