
Changes in Extreme Precipitation Accumulations during the Warm Season over
Continental China

MEIYU CHANG,a BO LIU,a CRISTIAN MARTINEZ-VILLALOBOS,b,c GUOYU REN,a,d SHANGFENG LI,e AND

TIANJUN ZHOU
f

aDepartment of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
bDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

cCentro de Estudios Avanzados en Zonas Áridas, Coquimbo, Chile
dLaboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, China

e Jilin Provincial Key Laboratory of Changbai Mountain Meteorology and Climate Change, Laboratory of Research for

Middle-High Latitude Circulation Systems and East Asian Monsoon, Institute of Meteorological Sciences of Jilin Province,

Changchun, China
fLASG, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China

(Manuscript received 4 August 2020, in final form 14 September 2020)

ABSTRACT: Precipitation accumulations, integrated over rainfall events, are investigated using hourly data across

continental China during the warm season (May–October) from 1980 to 2015. Physically, the probability of precipitation

accumulations drops slowly with event size up to an approximately exponential cutoff scale sLwhere probability dropsmuch

faster. Hence sL can be used as an indicator of high accumulation percentiles (i.e., extreme precipitation accumulations).

Overall, the climatology of sL over continental China is about 54mm. In terms of cutoff changes, the current warming stage

(1980–2015) is divided into two periods, 1980–97 and 1998–2015. We find that the cutoff in 1998–2015 increases about 5.6%

compared with that of 1980–97, with an average station increase of 4.7%. Regionally, sL increases are observed over East

China (10.9%6 1.5%), Northwest China (9.7%6 2.5%), South China (9.4%6 1.4%), southern Southwest China (5.6%6
1.2%), and Central China (5.3%6 1.0%), with decreases over North China (210.3%6 1.3%), Northeast China (24.9%6
1.5%), and northern Southwest China (23.9%6 1.8%). The conditional risk ratios for five subregionswith increased cutoff sL are

all greater than 1.0, indicating an increased risk of large precipitation accumulations in the most recent period. For high precip-

itation accumulations larger than the 99th percentile of accumulation s99, the risk of extreme precipitation over these regions can

increase above 20% except for South China. These increases of extreme accumulations can be largely explained by the extended

duration of extreme accumulation events, especially for ‘‘extremely extreme’’ precipitation greater than s99.
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1. Introduction

Precipitation extremes are generally projected to increase on

continental to global scales (Sun et al. 2007; Kharin et al. 2013;

Pendergrass and Hartmann 2014; Donat et al. 2016), as has been

observed during recent decades (Westra et al. 2013; Donat et al.

2016), implying greater risks of flooding (IPCC 2014). A large

body of literature focuses on the change of extreme precipitation

(Donat et al. 2016; Trenberth 2011; Sillmann et al. 2013; Zhai et al.

2005; Ma et al. 2015; Ma and Zhou 2015; Di et al. 2015; P. Yang

et al. 2017; Shi et al. 2015; Xu et al. 2018;Wasko andNathan 2019;

Zhang and Zhou 2019), often by applying a high percentile that is

taken as the threshold of extreme precipitation (e.g., the 95th

percentile) of the cumulative frequency distribution of daily pre-

cipitation. However, varying percentiles used by different studies

may lead to different conclusions when considering the responses

of extreme precipitation to global warming (Pendergrass 2018).

Therefore, it is necessary for researchers to carefully choose a

physically motivated definition of extreme precipitation.

In this study we employ the cutoff scale of the probability dis-

tribution of precipitation accumulations as an indicator of extreme

precipitation (Neelin et al. 2017). Precipitation accumulation is

defined as the total amount of precipitation during the course of a

precipitation event (fromevent onset to termination), representing

the integrated moisture loss during an event. The shape of prob-

ability distribution of precipitation accumulations has been docu-

mented in several studies (García-Marín et al. 2007; Peters et al.

2001, 2010;Deluca andCorral 2010, 2014;Martinez-Villalobos and

Neelin 2019) and consists of an approximate power-law rangewith

the probability density gradually decreasing with an increase of

accumulation size up to a certain cutoff scale sL and then dropping

sharply after it (Neelin et al. 2017). This implies that this cutoff

scale controls the extreme tail of the probability distribution.

Indeed, Martinez-Villalobos and Neelin (2018, hereafter MN18)

use the cutoff scale to study the changes in precipitation accumu-

lation extremes over the United States and show that there is a

significant positive correlation between sL and high accumulation

percentiles, further validating the application of the cutoff scale as

the threshold of extreme precipitation.

Furthermore, Stechmann andNeelin (2011, 2014) establish a

theoretical model for the distribution of precipitation event
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sizes and give a definition of the precipitation accumulation

cutoff scale sL. According to these studies, the cutoff scale sL is

controlled by the interplay between the integrated moisture

loss and moisture convergence variance; thus, as moisture

convergence fluctuations are expected to increase in most re-

gions under current global warming, the cutoff scale also in-

creases. Specifically, the accumulation cutoff scale combines in

one scale the effects of event duration as well as thermodynamic

(due to changes in moisture) and dynamic (due to changes in

circulation) effects on extremes (Martinez-Villalobos and Neelin

2019). On the other hand, compared to the cutoff scale precipi-

tation percentiles are artificially selected values and are more

sensitive to resolution and to the left-censoring of precipitation

time series (MN18).

Using observational and reanalysis datasets, previous stud-

ies have analyzed changes of extreme precipitation in past

decades over China. Overall, increasing trends were found for

all of China, but this trend exhibited distinct regional features

(Xu et al. 2011; Zhai et al. 2005;Wang and Zhou 2005; Liu et al.

2005; You et al. 2011; Ma and Zhou 2015; Ma et al. 2017; Zhou

et al. 2016). For example, based on the daily precipitation data

over China during the period 1961–2001, Wang and Zhou

(2005) showed that extreme daily precipitation events in-

creased significantly in Northwest China whereas it decreased

significantly in North China and Northeast China. Using high-

resolution gridding data (CN05) over China during the period

1961–2010, Zhou et al. (2016) found that total amount of

precipitation from extremely wet days (R95p) demonstrated

positive trends in Northwest China, South China, and East

China and negative trends in Northeast China and North

China. These studies mainly focused on daily precipitation

with the application of extreme indices, especially the high

percentiles of the cumulative frequency distributions. Ma

et al. (2015) analyzed the frequency of occurrence of daily

precipitation, but mainly focused on the changes in precip-

itation amount and frequency of different decades. Until

now, however, there have been no studies investigating

precipitation accumulation distributions and their changes

based on rain gauge data over China. We note that Eastern

China is one of the regions with the largest expected in-

crease in accumulation extremes by the end of the century

(Neelin et al. 2017), which provides further motivation to

document trends in accumulation extremes in current

climate.

In this study, we analyze the climatological and recent

changes of the precipitation accumulation cutoff scale. Unlike

previous research on daily precipitation extremes, the accu-

mulation framework allows us to partition changes in extremes

between trends in event duration (from precipitation onset and

termination) and intensity. According to the observational

hourly precipitation data during the warm season (May–

October) from 1980 to 2015, we calculate cutoff scales over

continental China and its subregions in the context of global

warming. Moreover, we also compare these results derived

from precipitation accumulation with those derived from daily

precipitation. We show evidence that the cutoff scales of the

probability distributions of precipitation accumulations and daily

precipitations are useful indicators in depicting precipitation

extremes and exhibit an overall increase in extreme precipitation

accumulations over continental China.

2. Data and methods

a. Hourly precipitation data

In this study, we use observational hourly precipitation

data at 1910 stations over China (Fig. 1a) obtained from

the National Meteorological Information Centre (NMIC) of the

China Meteorological Administration (CMA), covering the

period of 1980–2015 during the warm season (May–October),

to investigate the probability distributions of precipitation ac-

cumulations. The warm season includes late spring, summer

(June–August) and early autumn, in which the precipitation

accounts for more than 80% of the annual total for most of the

observational stations (Ren et al. 2015). The period of 1980–2015

FIG. 1. (a) Locations of the 1910 rain gauge stations used in this

study. (b)Multiyear (1980–2015)mean of total precipitation during

the warm season (May–October). The color box of the legend in

(b) represents the range within the adjacent two labels. Red lines

denote eight subregions of China: Northeast China (NEC), North

China (NC), Northwest China (NWC), East China (EC), Central

China (CC), northern Southwest China (nSWC), southern South-

west China (sSWC), and South China (SC). Evolution of number of

stations over China during the warm season between 1951–2015 is

shown in the small inset in (a).
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is used because the hourly precipitation data are available for the

high-density observational network (Fig. 1a, inset), and also it is

an abnormally rapid climate warming stage of the last century in

China and East Asia (Ren et al. 2017).

To examine the regional features of accumulation distribu-

tions and their changes, these stations are grouped into

eight different climate regions based on China’s National

Assessment Report on Climate Change (National Report

Committee 2007): Northeast China (NEC), North China (NC),

Northwest China (NWC), East China (EC), Central China

(CC), Qinghai-Tibet Plateau (SWC1), Southwest China

(SWC2), and South China (SC). Due to the uneven station

density, we have excluded the western parts of NWC and

SWC1 and renamed SWC1 and SWC2 as northern Southwest

China (nSWC) and southern Southwest China (sSWC), re-

spectively (Fig. 1a). The distribution of mean total precipita-

tion amount during the warm season (May–October) is shown

in Fig. 1b, there is an increase moving toward the southeast: the

low values are located over NEC, NC, and NWC and the high

values are located over EC, CC, SC, nSWC, and sSWC.

Note that the geographical pattern of stations follows the

geographical pattern of population (Ren et al. 2010), which leaves

the western part of the country undersampled. This implies that

aggregated results in NWC and SWC (nSWC and sSWC) regions

reflect mainly the eastern part of these regions. Meanwhile, when

we aggregate the precipitation data of all stations to calculate

probability density function (PDF) in China, the all-China results

mainly reflect the eastern part of the country.

b. Calculation of cutoff scale

As described in MN18, the precipitation accumulation s is

defined as the total accumulated precipitation from the ex-

ceedance of a small threshold (0.1mmh21 is used in this study

as it is the resolution of precipitation data) to the drop below

the threshold, and the formula, for continuous data, is given by

s5

ð tf
ti

R(t) dt , (1)

where R(t) is the precipitation intensity (mmh21) at time t,

with ti and tf the start time and the end time of the precipitation

event, respectively. For hourly precipitation data (as in this

study), the integral in (1) is replaced by a summation. Previous

studies (Peters et al. 2010; Deluca and Corral 2014; Stechmann

and Neelin 2014) have shown that the PDF of precipitation

accumulations ps is

p
s } s2t exp(2s/s

L
) , (2)

with t being the exponent of the power-law range (usually.1)

and sL the cutoff scale. Similarly, to compare the PDF of pre-

cipitation accumulations with that of daily precipitation P, we

fit daily precipitation PDFs (pP) using a gamma distribution

(Groisman et al. 1999; Cho et al. 2004) of the form

p
P }P2tP exp(2P/P

L
) . (3)

Typically, t . 1 while tP , 1, which is the main difference for

both distributions and is illustrated in Figs. 2c and 2d.

There are several ways these parameters could be estimated

(e.g., Peters et al. 2010; Deluca and Corral 2014). One simple

way to estimate t and sL can be found in appendix A of

Martinez-Villalobos andNeelin (2019). Here, we just provide a

review. By taking the logarithm of (2), a relationship between

functions of s and log(ps) is as follows:

log(p
s
)5 c

1
1 c

2
log(s)1 c

3
s , (4)

where c1 is a constant and c2 52t, c3 5 2(1/sL). Then we can

estimate the ci coefficients by a simple multivariate linear re-

gression and the parameters are given as t52c2 and sL52(1/c3).

The daily precipitation PDF parameters tP andPL in (3) can be

estimated by using the same method. The PDFs of precipita-

tion accumulation and daily precipitation over continental

China during the warm season for the period of 1980–2015 are

shown in Figs. 2a and 2b. As can be seen, the probability

density gradually decreases with the increase of accumulation

size s or daily precipitation P, and drops rapidly after the cutoff

scale. The effect of the cutoff scale sL (or PL) in controlling the

probability of largest precipitation events is obvious compared to

the probability distributions without cutoff scales as illustrated by

the dashed lines (Figs. 2a,b). Moreover, the difference of the

power-law part between accumulations and daily precipitation is

also apparent (Figs. 2c,d), with accumulations falling faster within

the power-law range (Fig. 2a).

It should be noted that for this method the fit of the accu-

mulation PDF is a prerequisite for the method in (4), and the

derivations of sL (PL) and t (tP) have a slight dependence on

the binning scheme, making it complicated to use sL (PL) to

investigate precipitation. According to previous studies (Peters

et al. 2010; Stechmann and Neelin 2014; Muschinski and Katz

2013; MN18), sL is approximately proportional to the moment

ratio sM. And hence here we estimate the cutoff scale sL using

moment ratio sM, which is defined as the ratio of the second

moment to the mean moment of s and the formula is given by

s
M
5

hs2i
hsi . (5)

Similarly, for daily precipitation P (over wet days, P $

0.1mm), the moment ratio PM is defined as

P
M
5

hP2i
hPi . (6)

3. Results

a. Climatology of precipitation accumulation cutoff scale

Consistent with MN18, significant positive correlation (r 5
0.95) is found over China between sM and accumulation 99th

percentile s99 at each station for the period of 1980–2015

(Fig. 3a). Meanwhile, significant positive correlations (statis-

tically significant at the 1% level; not shown in the paper) are

also found between sM and other high percentiles (s90, s95, s97,

s99.9), indicating that the cutoff can be used as a predictor of the

behavior of extreme accumulation percentiles. Moreover,

similar high positive correlations exist between PM and P99
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(r 5 0.97) (Fig. 3b) as well as between sM and PM (r 5 0.98)

(Fig. 3c). Therefore, we can safely infer that the conclusions

derived from precipitation accumulations hold true for daily

precipitation.

Figure 4 gives the climatological distribution of sM for each

station (Fig. 4a) and eight regions (Fig. 4b) in 1980–2015, with

high values mainly distributed over EC, CC, and SC and low

values over NEC, NWC, and sSWC, resembling largely that of

mean warm season total precipitation (Fig. 1b). Also, this

spatial pattern resembles those of heavy precipitation days and

very heavy precipitation days (Ma et al. 2015).

The cutoff is distinct from traditional percentile definitions

of extreme precipitation in that it is a physically motivated

scale, unlike percentiles, set by the balance between moisture

loss due to precipitation and moisture convergence (Neelin

et al. 2017; Martinez-Villalobos and Neelin 2019). Physically,

accumulations larger than sL occur in a regime where moisture

convergence outpaces moisture loss by precipitation, and op-

posite for accumulations smaller than sL (Neelin et al. 2017). In

other words, a uniform high percentile (e.g., 95th percentile)

may correspond to precipitation occurring in different dy-

namical regimes. Figure 5 displays the nearest precipitation

percentile (with a resolution of 0.1) to the climatological sL for

each station (Fig. 5a) and each region (Fig. 5b). Obviously, the

nearest percentile to the climatological sL for each station and

region is different. For example, the threshold of extreme ac-

cumulations is s98.9 in nSWC while in NWC this threshold is s97
(Fig. 5b). Even in the same region, for instance nSWC, the

precipitation percentiles corresponded to the sL, ranging from

less than s91 to greater than s98 (Fig. 5a).

FIG. 2. (a) Accumulation PDF and (b) daily precipitation PDF over China during 1980–2015 period. (c),(d) The

power-law part of accumulation precipitation and daily precipitation distributions, respectively. The error bars

indicate the results from 1000 bootstrap (with replacement) realizations (5th–95th), and the circles represent the

median value. The solid red lines in (a) and (b) represent the fitting lines given by (2) and (3), respectively. The red

dashed lines in (a) and (b) solely represent the power-law part of (2) and (3), respectively.
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b. Changes of cutoff scale for eight subregions

To investigate the changes of precipitation accumulations

in a warming climate, here we divided the whole period into

two equal periods, 1980–97 and 1998–2015.We have calculated

percentage changes of sM at each station (Fig. 6a). The formula

for calculating the percentage change is given by

percentage change

5 [(s
M
j
199822015

2 s
M
j
1980297

)/s
M
j
1980297

]3 100%. (7)

Overall, compared to the former period (1980–97), the

number of stations with increased sM accounts for about 58.5%

of the total during the recent period (1998–2015), with an

average increase of 4.7% in sM across stations.

In general, sM (;34.1mm) during 1998–2015 increased

about 5.6% compared with that (;32.3mm) of 1980–97 over

continental China. Figure 6b shows the mean percentage

changes of sM for eight divisions, based on 1000 bootstrap

(with replacement) realizations. Regionally, increases of sM
are found over five out of eight regions—EC (10.9% 6 1.5%;

mean 6 standard errors), NWC (9.7% 6 2.5%), SC (9.4% 6
1.4%), sSWC (5.6% 6 1.2%), and CC (5.3% 6 1.0%)

(Fig. 6c)—indicating that extreme precipitation accumulations

increased during past three or four decades over these regions.

Decreasesof sMare foundover three regions:NC(210.3%6 1.3%),

FIG. 3. (a) The scatter of sM and precipitation accumulation 99th

percentile s99 at each station. (b) The scatter of PM and P99 at each

station. (c) The scatter of sM and PM at each station.

FIG. 4. (a) The spatial distribution of sM at each station during

1980–2015 period. (b) The climatological distribution of sM for

eight divisions. The color box of the legend in (a) represents the

range within the adjacent two labels while the color box of the

legend in (b) represents the label at the center of the color box.
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NEC (24.9%6 1.5%), and nSWC (23.9%6 1.8%) (Fig. 6c).

The behaviors of PM between the two periods resemble those

of sM for all subregions (Fig. 6c), implying that precipitation

accumulation is also highly correlated with daily precipitation

when it comes to the changes. Note that changes in PM are

smaller in amplitude than those of sM, consistent with MN18.

Furthermore, changes in PM are largely consistent with trends

in daily extreme precipitation indices during the last decades

reported in previous studies (Zhou et al. 2016;Ma et al. 2015; P.

Yang et al. 2017). For instance, Zhou et al. (2016) revealed

similar decreasing trends in R95p over North China and

Northeast China, in accordance with the decreasing trend of

PM. In addition, the spatial patterns of changes in sM and PM

resemble those of changes in mean daily precipitation for the

warm season (Fig. S1 in the online supplemental material),

indicating that the change of extreme precipitation revealed by

cutoff is related to the changes of mean precipitation. This

spatial pattern of decadal changes in precipitation is closely

related to natural factors (Zhang 2015) such as thermal forcing

over the Tibetan Plateau (Duan et al. 2013) and Pacific decadal

oscillation (e.g., Q. Yang et al. 2017).

To examine the changes of the PDF associated with the

changes of sL, we calculated the PDFs for the three regions

(NWC, EC, and SC; Fig. 6c), with the biggest sM (or PM)

FIG. 5. The nearest percentile of the climatologically sL for (a) each

station and (b) each region. The reference percentiles are from the

90th to 99.9th percentile with an interval of 0.1. Note that the color box

of the legend in (a) represents the range within the adjacent two labels

while the color box of the legend in (b) represents the label at the

center of the color box.

FIG. 6. (a) Percentage change of sM at each station and (b) mean

percentage change of sM for each climate division between 1998–2015

and 1980–97 (1998–2015minus 1980–97). (c) Percentage changes of sM
and PM for eight climate divisions between 1980–97 and 1998–2015.

The results in (b) and (c) are based on 1000 bootstrap (with replace-

ment) realizations, and the boxes in (c) represent the 50th percentile

with the error bars represent the 5th–95th percentiles. The color box of

the legend in (a) represents the range within the adjacent two labels

while the color box of the legend in (b) represents the label at the

center of the color box.
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increases between the two periods (Fig. 7). As can be seen,

the relative changes of PDFs in two periods are obvious in

the extreme tails for accumulation and daily precipitation,

implying a larger fraction of extreme precipitation events in

1998–2015 (Figs. 7a,b). These increases in extreme precipita-

tion events are associated with the increases in sL (or PL),

which are well represented in the distributions of 1998–2015 by

just rescaling sL (Figs. 7c,d). The above analysis demonstrated

that the cutoff scale sL is physically linked to the shape of

probability distribution of precipitation accumulations. That is,

the changes of sL can be regarded as an indicator of changes of

the full extreme tails of PDFs.

Moreover, to further compare with the results using differ-

ent high percentiles, here the percentage changes of sM (orPM)

and different percentiles (90th, 95th, 97th, 99th, 99.9th) for

accumulation and daily precipitation are shown in Fig. 8. For

accumulations, it can be seen that the changes of different

percentiles are nearly consistent in the sign except for NWC

and nSWC regions, but the amplitudes differ (Fig. 8a). In

NWC, s95 shows a negative trend but s99 has a positive trend. A

similar situation is also revealed in the changes of the different

percentiles for daily precipitation (Fig. 8b). It is worth noting

that the changes in lower percentiles (e.g., the 90th and 95th

percentiles, which may be located in the power-law range of

FIG. 7. The PDFs of (a) accumulation and (b) daily precipitation calculated over the 1980–97 (red) and 1998–2015

(blue) for the EC, NWC, and SC regions with biggest sM increases (East China PDFs3 104, Northwest China PDFs

3 102, South China PDFs 3 1021). The error bars indicate the results from 1000 bootstrap (with replacement)

realizations (5th–95th), and the circles represent the median value. The red lines in (a) and (b) are fitted by

As2t exp(2s/sL) [or BP2tPexp(2P/PL)] and superimposed on the 1980–97 accumulations (daily precipitation)

observed PDFs, and the blue lines in (a) and (b) are fitted by the same formula and superimposed on the 1998–2015

accumulations (daily precipitation) observed PDFs. (c),(d)As in (a) and (b), but sL (orPL) of 1998–2015 is replaced

by the rescaled version through increasing the percentage change of mean sM (or PM) over these regions (Fig. 6b).
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the PDF) of NWC and nSWC are unclear, but the behaviors of

higher percentiles tend to follow those of sM or PM. These re-

sults show that using different precipitation percentiles may

lead to conflicting conclusions regarding changes in extreme

precipitation, consistent with Pendergrass (2018). Meanwhile,

the changes of percentiles above the percentile corresponding

to sL (PL) are well predicted by the changes in the respective

cutoff scales.

c. Ratio of accumulation probability density

For large precipitation events, the changes of the PDFs are

consistent with the changes of cutoff scales (Figs. 7a,b),

meaning that large precipitation event risks may increase.

Hence we calculate the conditional risk ratios between the two

periods to illustrate this. We define a risk ratio as

r
s
(ŝ)5

ð‘
ŝ

p00
s0 ds

0

ð‘
ŝ

p0
s0 ds

0
, (8)

which represents the ratio of probability of accumulations

larger than ŝ between 1998–2015 (p00
s0 ) and 1980–97 (p0

s0 ). Here

p00
s0 and p0

s0 are the probability densities calculated from the

accumulation precipitation larger than ŝ in 1998–2015 and

1980–97, respectively. The risk ratios can give information of

changes related to precipitating processes, because they only

depend on changes of the precipitating regime dynamics for

accumulations (MN18).

Based on the percentage change of sM, we have calculated

the risk ratios for the regions with increased sM (Fig. 9). We

label the position of the x axis with different accumulation

percentiles to understand the changes of probability for accu-

mulations. When the five regions with increased sM are re-

garded as a whole, the risk ratio has an increasing trend and

exceeds 1.2 for the accumulation size greater than s99.9,

meaning that the risk of extreme accumulation increases as the

cutoff scale is extended. Consistently, the conditional risk ra-

tios for five subregions with increased cutoff sM are all greater

than 1.0 and gradually increase, also implying an increased risk

of large precipitation accumulations, which may be further

accentuated under global warming (Neelin et al. 2017; Norris

et al. 2019). As can be seen, the probability of accumulations is

nearly identical for small accumulations, while for large accu-

mulations, significant changes are indicated by the risk ratios.

Taking into account sampling variability, the shape of the risk

ratios is roughly consistent with theoretical expectations (e.g.,

Martinez-Villalobos and Neelin 2019, their Fig. 8), observa-

tional estimates in the United States (MN18), and climate

model projections (Neelin et al. 2017). For example, over CC,

the risk ratio is slowly increasing with the accumulation size up

to about s96, and then followed by a rapid increase where the

accumulation size exceeds approximately s99. For accumula-

tions larger than s99, the risk ratios in these regions can reach

above 1.2 except for SC. These results indicate that, with the

extension of the cutoff scale in the PDF of precipitation ac-

cumulations, large accumulations exhibit significant increase in

1998–2015 compared to the former period. Similarly, the risk of

extreme accumulation decreases for the three subregions with

decreased sM (Fig. S2). More importantly, the change of cutoff

scale allows one to explain changes in the whole extreme tail of

the PDF [see Fig. 8 in Martinez-Villalobos and Neelin (2019)

for more details], while the change of an extreme percentile

provides little information by itself about how the whole PDF

is changing.

d. Changes of extreme accumulation: The role of event
duration and event-mean intensity

Next, wemove to resolve whether changes of the intensity or

the duration should be responsible for changes in the PDF of

precipitation accumulations.

An advantage of the accumulation framework is that we can

attribute changes to changes in event duration and event intensity.

To separate the effects of event duration (h) and event-mean in-

tensity (mmh21) on extreme accumulation, we have calculated

the changes in the number of events, mean duration, mean in-

tensity (averaged over event), and size of accumulation extremes

(mean accumulation of extreme accumulation events) (Fig. 10).

Similar toMN18, we used a regional threshold ranging from sM to

FIG. 8. (a) Percentage changes of sM and different percentiles

(s90, s95, s97, s99, s99.9) of accumulation precipitation for eight cli-

mate divisions between 1980–97 and 1998–2015. (b) Percentage

changes of PM and different percentiles (P90, P95, P97, P99, P99.9) of

daily precipitation for eight climate divisions between 1980–97 and

1998–2015. The results in (a) and (b) are based on 1000 bootstrap

(with replacement) realizations, and the boxes represent the 50th

percentile with the error bars represent the 5th–95th percentiles.
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5sM (sM is calculated using the whole period of 1980–2015) to

select accumulation events and to investigate why extreme accu-

mulations change over these regions. The range of sM–5sM is used

so that a variety of configurations with different balances between

number of samples and how extreme the events are can be sam-

pled. For example, sM contains many samples of events starting in

themoderate extreme range, whereas 5sM contains fewer samples

with only the most extreme events. Moreover, for the sake of

comparison with results from the common definition of extreme

precipitation, we also label the position of the x axis with several

corresponding accumulation percentiles. As can be seen, sM and

5sM correspond to at least accumulation 97th and 99.9th percen-

tiles, respectively, covering ‘‘moderate’’ to ‘‘extreme’’ extreme

precipitation.

Overall, when taking the regions (EC, CC, SC, NWC, and

sSWC) with extended cutoff as a whole (first row of Fig. 10),

the number of extreme events and the size of accumulation

extremes exhibit consistent positive trends. Moreover, for

accumulations larger than s99, it can be clearly seen that posi-

tive trends of extreme accumulations result from the increased

durations, rather than intensity (first row of Fig. 10). Similarly,

the decrease of extreme accumulations is also mainly due to

the decrease of duration (first row of Fig. S3). Regionally,

similar trends in event number and size of accumulation ex-

tremes are also found for the five regions with increased sM,

except for sSWC where the change of accumulations is not

significant (Fig. 10). Note that there are regional differences in

the changes of duration and intensity. For NWC, which was

reported to be wetting during past decades (Wang and Zhou

2005; Zhou et al. 2016; P. Yang et al. 2017), the extended du-

ration andweakened intensity are consistently found across the

selected range of extreme accumulations. Similar situations are

also found for CC, where the very heavy precipitation events

had increased (Ma et al. 2015). For EC, the strengthened in-

tensity appeared in the ‘‘moderately’’ extreme accumulations

approximately under s99, but the positive duration plays an

FIG. 9. Accumulation risk ratios (conditioned on event occurrence), calculated from (8), for the five regions with

increased sM. Note that the first one in the first row is obtained by taking the five regions with increased sM as a

whole. The solid red line represents the risk ratios from observations, and the pink shadow represents the 5th–95th

percentiles based on 1000 bootstrap (with replacement) realizations. The top x axis is labeled with the position of

different accumulation percentiles.
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important role in the change of accumulation for extreme ac-

cumulations larger than s99. However, for SC and sSWC, the

strengthened intensity seems to better explain the change

in accumulation, although the increase of duration and

the decrease of intensity appeared in the middle intervals

spanning from about 99th percentile to about 99.8th percentile

accumulations for SC. These regional results suggest that at

least for ‘‘extremely’’ extreme precipitation larger than s99, the

positive trend is mostly from the elongated duration, which are

in line with the results obtained by taking the regions with in-

creased sM as a whole (first row of Fig. 10). Furthermore, for

three subregions with decreased sM, the number of extreme

FIG. 10. Changes in (first column) the number of events, (second column)mean accumulation, (third column)mean event duration, and

(fourth column) mean event intensity of extreme accumulation events larger than a regional threshold ranging from sM to 5sM between

1998–2015 and 1980–97 for five regions with increased sM: (second row) East China, (third row) Central China, (fourth row) Northwest

China, (fifth row) South China, and (sixth row) southern Southwest China. The first row is obtained by taking the five regions with

increased sM as a whole. It is worth noting that the left end of the x axis corresponds to sM and the rightmost corresponds to 5sM. The value

of sM used here is calculated by using the whole period 1980–2015. The solid red line represents the changes from observations, and the

pink shadow represents the 5th–95th percentiles based on 1000 bootstrap (with replacement) realizations. The top x axis is labeledwith the

position of different accumulation percentiles.
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events and size of extreme accumulations show negative trends

(Fig. S3). Indeed, negative trends of extreme accumulations

also result from the shortened duration, rather than the re-

duced intensity (Fig. S3). In conclusion, the changes of extreme

events and accumulations are largely consistent with the

changes of cutoff scale and the changes of size of accumulation

extremes are mostly affected by the mean duration. Note that

changes in PM resemble those of sM, implying that the results

derived from precipitation accumulations apply also to daily

precipitation.

4. Summary and discussion

In this study, using hourly rain gauge measurements from

1910 stations, we investigated the climatology and recent

changes of precipitation accumulation distributions over con-

tinental China during the warm season. Overall, the climato-

logical cutoff sL of precipitation accumulation distributions is

about 54mmover China. At the station level, we find the cutoff

scale in each station to be positively correlated with extreme

accumulation percentiles, indicating that the cutoff scale can

be used to study extreme precipitation over China. Similar

positive correlation occurs for daily precipitation. Moreover,

the cutoff scales of precipitation accumulations and daily

precipitation are highly correlated, implying that the results

derived from precipitation accumulations can be used to explain

extreme precipitation indices derived from daily precipitation

data. On a regional scale, the distribution of cutoff sL is roughly

like that of mean warm season total precipitation, with the max-

imal values mainly located over East, Central, and South China.

We divided the whole period into two equal periods (1980–

97 and 1998–2015) to investigate changes of precipitation ac-

cumulation in the context of current warming climate. In

general, the number of stations with increased sL accounts for

about 58.5% of the total and the overall cutoff scale increases

about 5.6% over continental China in 1998–2015. Overall, the

regions with increased or decreased cutoff were characterized

with similar increasing or decreasing trends in event number or

size of accumulation extremes (Fig. 10 and Fig. S3). However,

changes of cutoff sL exhibit distinct regional features. On a

regional scale, increases were found over East China (10.9%6
1.5%), Northwest China (9.7%6 2.5%), South China (9.4%6
1.4%), southern Southwest China (5.6%61.2%), and Central

China (5.3% 6 1.0%). Also, three out of eight subregions

witnessed the decrease of cutoff scale, namely, North China

(210.3% 6 1.3%), Northeast China (24.9% 6 1.5%), and

northern Southwest China (23.9% 6 1.8%). Changes derived

from daily precipitation resemble those of precipitation accu-

mulations but with smaller magnitude. Furthermore, we found

that the changes of the PDFs of accumulation and daily pre-

cipitation in the right tails can be well represented by rescaling

the cutoff scales (Fig. 7), which can be used as a simple pro-

totype for future changes in the extreme tail (Neelin et al.

2017; MN18).

For five subregions with increased cutoff, the conditional

risk ratios are gradually increasing and all larger than 1.0, and

especially for high accumulations larger than s99, the risk ratios

are larger than 1.2 over five regions except for South China,

suggesting that there are significant increases for large accu-

mulations greater than s99 during 1998–2015 compared to the

1980–97 period. In addition, the number of extreme events and

size of extreme accumulations for five regions with increased sL
have an overall increasing trend. The increased size of extreme

accumulations can be largely accounted for by an extension of the

mean duration of these extreme events, especially for ‘‘extremely

extreme’’ precipitation greater than approximately s99.

The dominating role of duration, rather than intensity, in

explaining increases in accumulation is consistent with other

observational estimates in the United States (MN18) and

global warming climate model projections in midlatitudes

(Norris et al. 2019). Since extreme accumulations are highly

correlated to extreme daily precipitation, this framework

highlights the different factors controlling daily versus hourly

precipitation intensities (Lenderink and van Meijgaard 2008;

Barbero et al. 2017; MN18). While hourly intensities are gen-

erally projected to increase (Lenderink and van Meijgaard

2008; Prein et al. 2017), the most extreme hourly precipitation

may not be contributing to the most extreme daily precipita-

tion, as the latter may be mainly controlled by increases in

event duration.

The trends of extreme precipitation over China indicated by

the changes of accumulation cutoffs over different regions are

largely consistent with previously studies during the last de-

cades (Xu et al. 2011; Liu et al. 2005; You et al. 2011; Zhou et al.

2016; Ma et al. 2015; P. Yang et al. 2017). Over continental

China, the cutoff scales of the probability distributions of

precipitation accumulations and daily precipitations are dem-

onstrated to be useful in depicting precipitation extremes, and

provide a complement to studies focusing on changes in ex-

treme percentiles. This analysis and previous studies (Ren et al.

2015) showed a more obvious rise in extreme precipitation

processes of shorter duration than those of longer duration in

China over the last decades, and this might have also been

related to other factors than global climate warming such as

urbanization effect, aerosols effect and possibly the systematic

bias induced by weakening wind speed (Rosenfeld et al. 2008;

Ren et al. 2016; Zheng and Ren 2017). All of these factors

combine to produce increases in the cutoff scale in most of the

regions studied. The good prediction of the changes in extreme

tails of PDFs by rescaling the cutoff (Fig. 7) provides a useful

prototype to understand future changes of precipitation extremes.
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