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ABSTRACT

This paper presents an analysis of changes in global land extreme temperature indices (1951–2015) based on

the new global land surface daily air temperature dataset recently developed by the China Meteorological

Administration (CMA). The linear trends of the gridpoint time series and global land mean time series were

calculated by using a Mann–Kendall method that accounts for the lag-1 autocorrelation in the time series of

annual extreme temperature indices. The results, which are generally consistentwith previous studies, showed

that the global land average annual and seasonal mean extreme temperature indices series all experienced

significant long-term changes associatedwith warming, with cold threshold indices (frost days, icing days, cold

nights, and cold days) decreasing, warm threshold indices (summer days, tropical nights, and warm days)

increasing, and all absolute indices (TXx, TXn, TNx, and TNn) also increasing, over the last 65 years. The

extreme temperature indices series based on daily minimum temperatures generally had a stronger and

more significant trend than those based on daily maximum temperatures. The strongest warming occurred

after the mid-1970s, and a few extreme temperature indices showed no significant trend over the period

from 1951 to the mid-1970s. Most parts of the global land experienced significant warming trends over the

period 1951–2015 as a whole, and the largest trends appeared in mid- to high latitudes of the Eurasian

continent.

1. Introduction

Global mean surface temperature has increased over

the last 100 years (Cubasch et al. 2013; Jones et al. 2012;

Sun et al. 2017b). A changing climate may lead to

changes in the frequency, intensity, duration, and timing

of weather and climate extremes and can probably result

in unprecedented weather-related disasters. If exposure

and vulnerability remain unchanged, extreme weather

and climatic events will have direct negative impact

on natural and human systems (Handmer et al. 2012;

Seneviratne et al. 2012). During the period of 1980–

2010, the global annual economic losses caused by ex-

treme weather and climatic events have ranged from a

few billion U.S. dollars to more than $200 billion (in

2010 dollars), with the highest value in 2005 (Handmer

et al. 2012). A better understanding of long-term change

of extreme climate thus cannot only contribute to

climate change detection, attribution and projection,

but can also improve management of extreme-climate-

related disaster risk.

During the last two decades, great progress was

made in the studies of both global and regional long-

term changes in extremes, thanks to the efforts of

the joint Expert Team on Climate Change Detection

and Indices (ETCCDI) of the WMO Commission

for Climatology (CCL) and World Climate Research

Programme (WCRP) Climate Variability and Pre-

dictability (CLIVAR) project, which organized a se-

ries of regional workshops to develop, calculate and

analyze a suite of extreme climate indices (Frich et al. 2002;

Peterson et al. 2002; Easterling et al. 2003; Aguilar et al.

2005; Vincent et al. 2005, 2011; Peterson 2005; Zhang

et al. 2005a; Klein Tank et al. 2006; New et al. 2006;Corresponding author: G. Y. Ren, guoyoo@cma.gov.cn
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Alexander et al. 2006; Peterson and Manton 2008;

Donat et al. 2013a). A total of 27 core indices (in-

cluding 16 extreme temperature indices) and the cor-

responding calculation procedures (e.g., RClimDex

and FClimDex) were formulated (X. Zhang et al. 2011),

which were also widely used for studies of regional ex-

treme temperature change (Yan et al. 2002; Klein Tank

andKönnen 2003; Zhai and Pan 2003; Vincent andMekis

2006; Brown et al. 2010; Zhou and Ren 2011; Xu et al.

2013; Sharma and Babel 2014; Fonseca et al. 2016; Sun

et al. 2017a; Jayawardena et al. 2018).

Extreme climate datasets, for example, the Met

Office Hadley Centre climate extremes datasets

HadEX (Alexander et al. 2006) and HadEX2 (Donat

et al. 2013a), and the Global Historical Climatology

Network–Daily datasets HadGHCND (Caesar et al.

2006; Donat et al. 2013b) and GHCNDEX (Donat

et al. 2013b), were developed to facilitate the analyses

of global extreme climate change. Most of the daily

temperature datasets were sourced from the European

Climate Assessment dataset, the Global Historical

Climatology Network–Daily dataset, and a series of

regional workshops on extreme climate and covered a

period from 1951 to recent years. Generally, the re-

sults of the analyses based on these datasets showed

widespread and significant changes in the temperature

extremes associated with climate warming, with those

indices derived from daily minimum temperature ex-

hibiting larger and more significant trends over the

past decades (Alexander et al. 2006; Caesar et al. 2006;

Donat et al. 2013a,b).

A new global land surface daily temperature dataset

was recently developed by National Meteorological In-

formation Center of the China Meteorological Admin-

istration (CMA), under the framework of the national

research project of public welfare supported by the

Ministry of Science and Technology of China (Ren et al.

2014; Xu et al. 2014). This work was based on the CMA

Global Land Surface Daily Temperature (GLSDT-V1.0)

dataset, which was an integrated international and

national dataset with a good observational coverage in

some regions especially in East Asia, permitting a new

analysis of the global change of the main extreme

temperature indices over the period 1951–2015.

The rest of this paper is organized as follows: the

data and methods are first described in section 2. In

particular, the data quality control, the homogeneity

test procedures, extreme temperature indices and their

calculation, and the methods of gridding, area weight

averaging, trend estimate, and significance test are in-

troduced in this section. The results are then presented

in section 3. The discussion and conclusions are offered

in sections 4 and 5, respectively.

2. Data and methods

a. Data sources and data integration

This study was based on the GLSDT-V1.0 (Ren et al.

2014; Xu et al. 2014) and China HomogenizedHistorical

Temperature Dataset (CHHTD-V1.0) developed by

the National Meteorological Information Center, CMA

(Cao et al. 2016).

GLSDT-V1.0 is an integrated daily temperature data-

set that is from three global sources [Global Historical

Climatology Network–Daily (GHCND), Global Surface

Summary of the Day (GSOD), and Climate Prediction

Center (CPC)], one regional source [European Climate

Assessment and Dataset (ECA&D)], and five national

sources (mainland of China, Russia, Australia, South

Korea, and Vietnam). All the data in the GLSDT-V1.0

global sources and regional sources are open access, and

the data in national sources are collected through bilat-

eral exchanges with relevant countries (Table 1).

TABLE 1. Summary of data sources used in GLSDT-V1.0. Shown in the table are the priority grade (1 for first priority and 4 for least

priority) of each dataset when included in GLSTD-V1.0, the number of total stations contained in each of the datasets, and the number of

unique stations that each data source provides for GLSTD-V1.0.

Source Priority Name/country No. of total stations No. of unique stations

Global 2 GHCND (Menne et al. 2012a,b) 30 519 24 127

3 GSODa 28 514 9630

4 CPCb 11 267 3390

Regional 1 ECA&D (Klein Tank et al. 2002) 2872 2811

Country 1 Mainland of China (Cao et al. 2016) 2419 2419

1 Russia 223 88

1 Australia (Trewin 2001) 103 72

1 South Korea 76 70

1 Vietnam 22 22

a ftp://ftp.ncdc.noaa.gov/pub/data/gsod.
b https://www.cpc.ncep.noaa.gov/.
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The integration of multiple data sources mainly in-

cludes the following steps:

1) Data standardization. The datasets come from dif-

ferent sources, with station naming rules, data units,

precisions, missing values codes, observational time

system, and data formats being different. Therefore,

it is necessary to standardize the data from various

sources first. The processing steps are as follows:

(i) Unified station identification code. Referring to

the station naming rules of GHCND (Menne

et al. 2012a,b) data products, the first 2 digits are

national codes, the middle digit is the data

source identifier (if it is aWMO station number,

the logo is ‘‘W’’), and the last 8 digits retain the

original station code of each source. If the sta-

tion code is less than 8 digits, ‘‘0’’ was added to

front as prefix.

(ii) Unified data units. Fahrenheit degrees were

converted to Celsius degrees (8C).
(iii) Unified data precision. The precision of the

original daily temperature data is generally

0.18C, but the temperature data of the United

States are mostly stored in whole Fahrenheit de-

grees, which is equivalent to a precision of 0.568C;
most of the Canada data have a precision of 0.58C,
and many of the Mexican records have a precision

of 18C (Zhang et al. 2009; Peterson et al. 2008). The

precision is lower than the standard of 0.18C rec-

ommendedbyWorldMeteorologicalOrganization

(WMO2008), whichwould affect the estimation of

the trends andmeans of the four relative threshold

indices (TN10p, TN90p, TX10p, TX90p) because

the quantile estimator may be related to data

resolution (Zhang et al. 2009; Peterson et al.

2008). Therefore, we added a small uniform

random number from the interval (20.5, 0.5) to

each daily temperature series (Tmax andTmin) and

then rounded it to the nearest 0.18C when com-

puting the four relative threshold indices, follow-

ing the proposal by Zhang et al. (2009). Other

indices analyzed in this study were calculated by

using the original daily temperature series that

had not been processed by adding any random

numbers because the calculation of these indices

does not need to estimate the quantile.

(iv) Shifting Chinese data backward by 1 day. The

data of China’s ground-based manual meteoro-

logical stations are observed at 2000–2000 Bei-

jing time (BT) before around year 2003. In line

with global data, the time system of China’s sta-

tions was converted to 0000–0000 BT. For

example, the daily maximum and minimum

temperature from 2000 BT 2 January to 2000 BT

3 January is taken as the daily maximum and

minimum temperature of 3 January because

the daily maximum temperature always appears

around 1300–1600 BT, and the daily minimum

temperature always appears around 0600–0900

BT. This practice can be problematic in some

special cases (about 1%). For example, suppose

that the temperature began to drop sharply after

2000 BT 3 January, which caused the daily min-

imum temperature on 3 January to probably

appear between 2000 and 2400 BT instead of

around 0600–0900 BT. Currently, there is no

better way to solve this problem.

(v) Unified data formats. In each station’s data file,

from left to right are the station number, date,

climate element (maximum andminimum temper-

ature), and quality control code, respectively.

(vi) Unified missing values code. The missing values

code of a climate element (maximum tempera-

ture and minimum temperature), longitude and

latitude, and elevation are marked as 2999.9.

2) Checking and integration of the repetitive stations.

The data from different sources may contain dupli-

cated stations. The stations will be regarded as

duplicated ones on the condition that the WMO

station codes are the same, or the latitude and lon-

gitude are exactly the same (the precision of latitude

and longitude used in this study is 0.018), or the lat-

itude and longitude are close (difference of longitude

and/or latitude between the stations of two data

sources is less than 0.508) and at least 60% records of

the two source series during the study period are

identical.

It is necessary to make further analysis for the dupli-

cated stations to decide which stations should be retained.

The stations with the longer series were retained. If the

series length is same, then the stations series with the

higher priority were retained. The priority of data was

assigned based on the data sources, the frequency of up-

dates, and the length of time series (see Table 1). The

integrity and quality of data product released by the na-

tional meteorological agencies of China, South Korea,

Australia, Russia, and Vietnam are relatively high, so

these data products have the highest priority.

The dataset of CHHTD-V1.0 (Cao et al. 2016) had

undergone a rigorous quality control and had been ho-

mogenized through the software RHtestsV3 (Wang and

Feng 2010). The dataset has the best coverage of ho-

mogeneous daily temperature data in the mainland of

China. Therefore, in order to make the best use of the

existing homogeneous dataset, we replaced the part of
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the dataset for themainland of China in theGLSDT-V1.0

with the CHHTD-V1.0.

We also used the dataset of stratospheric aerosol op-

tical depth at 550 nm (Sato et al. 1993) that is available

online (https://data.giss.nasa.gov/modelforce/strataer/).

This dataset starts in 1850 and ends in July 2012. Con-

sidering the time period in this study, we only use the

data between January 1951 and December 2011.

b. Data quality control

The dataset GLSDT-V1.0 had undergone a quality

control when it was developed in 2014. After the two

datasets of GLSDT v1.0 and CHHTD-V1.0 (Cao et al.

2016) were integrated to one, we conducted a new quality

control that was mainly based on the module embedded

in the software RClimDex (Zhang and Feng 2004). This

work was performed following the 6-step checks below:

1) Whether the latitude and longitude values of the

stations are out of bounds. The longitude and latitude

values of each station should be limited between21808
and 1808, 2908 and 908, respectively.

2) Whether the records are repetitive. The data of differ-

ent months for the same station were checked for

repetition. For example, the daily maximum tempera-

ture records for thewhole years of 1959 and 1979 are the

same at stationAG000060590, and these two years data

were replaced by missing values.

3) Whether the dates are repetitive. The results show

that there are not any repetitive dates.

4) The climatological limit value of the temperature.

Because the highest temperature and the lowest tem-

perature reported for the globe in literature (Cerveny

et al. 2007) were 57.88 and 289.48C, respectively, the
daily temperature values that fall outside of this range

(from289.48 to 57.88C)were regarded asmissing values.

5) The internal consistency. Daily minimum and max-

imum temperatures were set to missing values if the

daily minimum temperature is larger than the daily

maximum temperature.

6) The climate extreme value. The maximum range

of daily minimum (or maximum) temperature

was defined as five standard deviations (std) of

the reference period (1961–90) mean value, that

is, [mean 6 5 3 std]. Daily temperatures that were

found falling outside of this range were replaced by

missing values. It is possible that an extremely small

portion of these outliers could be a true climatic

extreme that was excluded, and this treatment may

have made the extreme temperature indices change

of certain stations or grid boxes less extreme.

Finally, stations that have no more than 15 days of

missing values in a year and no more than 15 years of

missing values during the reference period 1961–90 were

retained. Totally, there are 12 295 such stations, which

were selected for use in the following analysis.

c. Data homogeneity

Homogenization is amore complicated problemwhen

compared with the problems of data quality. The inho-

mogeneity of data series can be caused by the changes

of nonclimatic factors (e.g., observing procedures and

practice, station relocation, and observing times), which

will make the estimate of trend of climate change un-

reliable. There is not always a coherent approach to

cope with the problem of inhomogeneity (Peterson et al.

1998). A number of global or regional homogeneous

monthly datasets had been developed (Menne and

Williams 2009; Lawrimore et al. 2011; Jones et al. 2012;

Vincent et al. 2012; Xu et al. 2018). However, only a few

homogenized regional daily temperature datasets have

been developed (Vincent et al. 2002; Wijngaard et al.

2003; Brunet et al. 2006; Li and Yan 2009; Trewin 2013;

Xu et al. 2013; Cao et al. 2016) because of the difficulty

caused by the largely spatiotemporal variability of daily

temperature (Vincent et al. 2012) and the sensitivity of

daily temperature to topography and local environment

(Trewin and Trevitt 1996).

In this study, although the datasets of the mainland of

China and Australia had been homogenized (Cao et al.

2016; Trewin 2001), the data in other regions have

not been adjusted for homogeneity. To avoid errone-

ous trend estimates caused by the nonclimatic factors

as much as possible, however, we used the penalized

maximal F test method of RHtestsV4 software (Wang

2008a,b; Wang and Feng 2013) to test the homogeneity

of all the station data series without a reference series. If

step changes of data series were detected, they would be

excluded. Because of the lack of metadata, and also

since some of these step changes detected may some-

times reflect true climatic shifts, a high confidence

threshold of 99.99% was adopted, which means that

only the most substantial inhomogeneities would be

detected and excluded. This would be a reasonable ap-

proach that was also applied for other large datasets

such as ECA&D (Klein Tank et al. 2002) and HadEX

(Alexander et al. 2006). In total, 1074 out of the 12 295

stations were identified as inhomogeneous at the high

confidence level and were thus excluded from our sub-

sequent analysis. Given that the daily maximum/mini-

mum temperature of GSOD dataset may be calculated

from incomplete days and most of the GSOD stations

located in the areas where the daily temperature records

are already well covered by other datasets, we finally

excluded most of GSOD stations, except for the 64

stations in Africa and South America where the station
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coverage was sparse. Therefore, the new dataset of

GLSDT-V1.0 thus contains in total 10 372 stations for

use in this study. The stations are shown in Fig. 1a, the

yearly counts of stations with data in Fig. 1b, and the

number of stations in each grid point with at least one

station in Fig. 1c.

Figures 1a and 1c show the uneven distribution of the

stations across the continents. The densest observations

are seen in three regions: Europe, East Asia, and the

United States. Blank areas and sparser observations are

visible in Africa, West Asia, SouthAsia, Southeast Asia,

and South America. The yearly count of stations is

characterized by a low value in the early 1950s, a high

level of over 6000 stations during 1961–95, and a decline

after the mid-1990s (Fig. 1b). The recent decline in data

coverage mainly occurs in Europe, Asia, Africa, and

Canada (Figs. 2a–d). Compared with other datasets in-

cluding HadEX2 (Donat et al. 2013a) and GHCNDEX

(Donat et al. 2013b), more available temperature sta-

tions were added in this research, especially in East

Asia. The temperature stations included only in this

research but not inGHCNDEXandHadEX2 are shown

in Figs. 2f and 2h. The largest increase in number of

stations in GLSDT can be seen in Asia, but other con-

tinents also witness increase in varied extents in the data

coverage. It should be noted that the HadEX2 dataset

only incorporated the United States and Australia sub-

sets of the stations with homogeneous data series, and this

is themain reason whyGLSDT has more stations in these

regions compared to HadEX2. Overall, this research ap-

plies more stations in East Asia, Europe, and South

America compared to the GHCNDEX; and in East Asia,

the United States, and continents of the Southern Hemi-

sphere compared to HadEX2.

d. Extreme temperature indices

To make comparisons with previous studies, 12 ex-

treme temperature indices recommended by ETCCDI

were used. Four indices [the warm spell duration index

(WSDI), cold spell duration index (CSDI), growing

season length (GSL), and daily temperature range

(DTR)] included in the recommendation of ETCCDI

were also calculated but not analyzed in this paper. The 27

ETCCDI indices are defined by the intensity, frequency,

and duration of abnormal temperature events. (Detailed

definitions and calculation of these indices are described

at http://etccdi.pacificclimate.org/list_27_indices.shtml.)

We developed a new procedure, based on the func-

tions of R language package climdex.pcic (Bronaugh

2015), to batch calculate the extreme indices for multi-

stations, which was different from the climdex.pcic

package that can only be used to calculate a single station

FIG. 1. (a) Locations of temperature stations used in this study. The colors represent the length of time series of

stations. The number in parentheses indicates the total number of stations. (b) The number of stations each year.

(c) The number of stations in the grid. (d) The station ratio of non-Gaussian distribution for each of the 12 extreme

temperature indices.
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one time. It should be pointed out that, when calculating

the four relative threshold indices (TN10p, TX10p, TN90p,

and TX90p) by the definitions, there are artificial in-

homogeneities at the beginning and end of the reference

period, whichmake these indices unsuitable formonitoring

and detecting long-term change; these can be effectively

eliminated by using a bootstrap resampling procedure

(Zhang et al. 2005b). The climdex.pcic package (Bronaugh

2015) also adopted this bootstrap resampling method

(Zhang et al. 2005b) in its algorithm for calculating the four

relative threshold indices, which was also used by other

researchers (Sillmann et al. 2013).

The time period of 1961–90 was considered as the

climate reference period in this study. Regarding the

FIG. 2. (a)–(d) The stations distribution in the years 1955, 1975, 2000, and 2015. (e)–(h) The stations of

GHCNDEX and HadEX2 (Donat et al. 2013a,b), and the corresponding temperature stations that are included

only in GLSDT dataset but not in GHCNDEX andHadEX2, respectively. All the selected stations have at least 15

years of nonmissing data during the reference period 1961–90. The station record length refers to the length of

nonmissing data from 1951 to 2015.
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calculation of the monthly indices, the number of

missing values should be no more than 3 days in a

month. For the calculation of the annual indices, not

only the number of missing days should be no more

than 3 days in a month, but also the number of missing

days should be no more than 15 days in a year. The

units of the four relative threshold indices (TN10p,

TX10p, TN90p, and TX90p) were converted into days

for better understanding.

e. Analysis methods

As the elevations of stations are variable and the

spatial distribution of stations is uneven at different

regions, it is unreliable to calculate the global average

series through simple arithmetic average of the sta-

tion data. Hence, the station temperature indices

were first calculated for daily time series, and then the

station indices values in the grids of 58 3 58 latitude–
longitude were averaged to obtain the grid indices

values. The grid area-weighted average method

developed by Jones and Hulme (1996) was used to

calculate the global average extreme temperature

indices series.

First, the annual/seasonal anomaly series relative to

the reference period were calculated based on stations

indices.

Second, we divided Earth’s surface into 58 3 58
latitude–longitude grids as mentioned above and aver-

aged all the available station anomaly series within a

grid box to get the grid anomaly series. The numbers

and distribution of the grids with values varies among

the different extreme temperature indices, but the

blank grids are mostly distributed in Africa, Antarctic,

and northern South America.

Finally, the global land average anomaly series was

calculated using the gridbox area-weighted average

method, with the weights being the cosines of the lati-

tude of center of each grid with value (Jones and Hulme

1996). The global land average time series were calcu-

lated using only those gridcell series with at least 90% of

data during 1951–2015.

Ordinary least squares (OLS) is widely used in the

calculation of trends due to its simplicity and in-

telligibility. As OLS method is based on the hypothesis

that the data have a Gaussian distribution, it is not ro-

bust to estimate trends when the data are not Gaussian

distributed or there are outliers at the bound. Hence, the

Shapiro–Wilk normality test (Royston 1982) was used

to examine if the data series of a station comes from

Gaussian distribution. The results showed that most of

the indices violate the Gaussian assumption in varied

extents (Fig. 1d). Additionally, serial correlation could

increase the rejection rate of trend significant test

(i.e., more significant trend would be obtained),

which made the result unreliable (Von Storch and

Navarra 1999). We calculated the partial autocorre-

lations of annual mean extremes indices series for

each grid points for different lag (lag 5 1, 2, . . . , 12).

As a result, we found that few partial autocorrela-

tions for lag . 1 are significant at the 5% level.

Therefore, the linear trend of a gridbox average mean

anomaly time series was calculated using a modi-

fied Theil–Sen estimator (Sen 1968) that diminished

the effect of lag-1 autocorrelation using an iterative

prewhitening process (Zhang et al. 2000; Wang and

Swail 2001), and the Mann–Kendall test (Mann 1945;

Kendall 1955) was used to test the significance of

trend at the 5% level. It was determined that, when

the trends of gridcell series were estimated, the length

of the time series should not be less than 40 years

and the last year of the time series should not be ear-

lier than 2000; otherwise the grid trend was set as

missing values.

However, if a gridcell series of four absolute

threshold indices [number of frost days (FD), number

of summer days (SU), number of icing days (ID), and

number of tropical nights (TR)] is all zero values,

that is, no extreme events occurred in the entire time

series, the trend of this gridcell series would still

be calculated, but a cross mark would be added on

the grid cell, which indicated that the trend esti-

mate of this gridcell series was not being robust in

statistics (Frei and Schär 2001). In addition to zero

values, there is another situation in which the ex-

treme events occurred every day of the year, that is,

the saturated values (365/366). For example, summer

days and/or tropical nights of some stations near the

equator may have saturated values (365/366) in al-

most all years. We found that none of the stations

have all saturated values in the entire time series, and

only a few stations (3–5) whose ratio of saturated

values to record length exceeds 90%. So, the situation

of saturated values would not be taken into account in

this study.

In addition to the whole time period of 1951–2015, we

also calculated and analyzed the trends of the extreme

temperature indices for two subperiods of 1951–75 and

1976–2015 according to the change characteristics of

these indices. Climatic seasons were applied to analyze

the long-term change in seasonal mean extreme tem-

perature indices. March, April, and May (MAM) were

considered spring (autumn in Southern Hemisphere);

June, July, and August (JJA) were considered summer

(winter in Southern Hemisphere); September, October,

and November (SON) were considered autumn (spring

in Southern Hemisphere); and December, January,
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and February (DJF) were considered winter (summer

in Southern Hemisphere).

3. Results

For all the indices, the global land average anomaly

series shows a significant (at the 5% level) warming

trend during the period 1951–2015. However, the

change mainly occurred during the period 1976–2015.

For most of the indices, the trend magnitude over

the period 1951–76 is small and not significant sta-

tistically (Table 2). This temporal characteristic is

consistent with the global land mean surface air

temperature change as reported in previous works

(Lawrimore et al. 2011; Jones et al. 2012). It should be

also noted that the results are not strictly ‘‘global land

average’’ because of the substantial spatial gap in

some regions.

In the rest of this section, we mainly analyzed the

absolute threshold indices (FD, SU, ID, and TR),

relative threshold indices (TN10p, TX10p, TN90p,

and TX90p), and extreme value indices (TXx, TNx,

TXn, and TNn) to keep the length of this article

within the limit (see Table 2 for descriptions of these

indices).

a. Absolute threshold indices

Figure 3 shows the spatial distribution of trend and the

global land average anomaly series for the four absolute

threshold indices for the period 1951–2015.

In the perspective of spatial distributions of trends,

the frequency of frost days was decreasing in most parts

of the world, with Europe and Asia decreasing more

than the other regions andNorthAmerica andAustralia

decreasing modestly (Fig. 3a). However, the frequency

of the frost days of a few grid boxes in southern Europe,

North America, and the southern part of South

America were increasing, although the upward trends

were mostly insignificant. The frequency of summer

days was increasing in most parts of the global land,

and the midlatitude zone of the Northern and South-

ern Hemispheres is the most obvious area for warming

in summer; in eastern and central North America,

however, the frequency of summer days was decreas-

ing (Fig. 3b). The frequency of icing days was de-

creasing in the most regions of the world, but the

eastern, central, and southern parts of the United

States witnessed an increasing trend (Fig. 3c). The

frequency of tropical nights was also increasing in the

most parts of the world, despite a decreasing trend

that could be seen in a small part of the central United

States (Fig. 3d).

The global land average of frost days decreased over

the entire study period, with the most rapid decline

occurring after the mid-1970s during which the anom-

aly value of the index was mainly negative. Frost days

were relatively lower in 1990, 1998, 2007, and 2015, and

the lowest values occurred in 2015 (Fig. 3a). The

change pattern of icing days is similar to that of frost

days, but the latter has a greater trend in most parts of

the world (Table 2). Before the mid-1970s, there was

almost no obvious trend in summer days, but the global

average index series increased rapidly since the mid-

1970s. Since the mid-1970s, except for the obvious

negative anomalies in 1983–85 and 1992–93, all the

other years registered positive anomalies, with the

highest positive values appearing in the last decade.

The lowest level occurred in 1992–93, when the

stratospheric aerosol optical depth was at its peak due

to the influence of the eruption of the Mount

TABLE 2. Trend estimates for 12 global extreme temperature indices over the periods 1951–75, 1976–2015, and 1951–2015. Trends of at

least 5% significance are shown in bold. The units of cold nights (TN10p), cold days (TX10p), warm nights (TN90p), and warm days

(TX90p) were converted to days.

Trend

Index 1951–75 1976–2015 1951–2015 Units

Frost days (FD) 20.83 22.31 21.96 days decade21

Summer days (SU) 20.21 2.95 1.76 days decade21

Icing days (ID) 20.50 20.83 20.96 days decade21

Tropical nights (TR) 0.00 2.03 1.27 days decade21

Maximum Tmax (TXx) 20.08 0.25 0.13 8C decade21

Maximum Tmin (TNx) 20.01 0.27 0.19 8C decade21

Minimum Tmin (TXn) 0.07 0.40 0.28 8C decade21

Minimum Tmin (TNn) 0.05 0.52 0.40 8C decade21

Cold nights (TN10p) 20.97 23.64 24.01 days decade21

Cold days (TX10p) 20.45 23.41 22.85 days decade21

Warm nights (TN90p) 0.13 8.31 5.34 days decade21

Warm days (TX90p) 21.75 6.07 3.95 days decade21
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Pinatubo volcano in 1991. When the stratospheric

aerosol optical depths were relatively high, the sum-

mer days were usually fewer. The change of tropical

nights is similar to summer days, but the trend mag-

nitude of the former is generally greater.

Therefore, all of the four absolute threshold indices in-

dicate warming trends during the study period 1951–2015

(i.e., frost days and icing days decreased, and summer

days and tropical nights increased), but the warming of

these indices mainly occurred after the mid-1970s. No

FIG. 3. Trends distribution of grid average annual extreme temperature indices (day decade21) and global land

average time series of annual anomalies relative to the reference period (1961–90) average (day) over 1951–2015 for

(a) frost days (FD), (b) summer days (SU), (c) icing days (ID), and (d) tropical nights (TR). Trends were calculated

only for the grid boxes that have at least 40 years of data during the study period and the last year of the data does

not occur before 2000. The global average time series were calculated using only the gridcell series that have at least

90% of data during 1951–2015. Stippling indicates the gridcell trends are significant at the 5% level. Cross marks

indicate the gridcell series with only zero values, i.e., no extreme events occurred in the entire time series. The black

smooth curves on the bar chart were obtained by using the locally weighted scatter smoothing (LOWESS) method

(Cleveland 1979). Gray shading presents the time evolution of global average aerosol optical depth series at 550 nm

(Sato et al. 1993).
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statistically significant change occurred for these indices

before the mid-1970s.

b. Relative threshold indices

Figure 4 presents the linear trends patterns and global

land average series of four relative threshold indices

(cold nights, cold days, warm nights, and warm days). In

view of the spatial distributions of the trends, cold nights

and warm nights showed a good spatial consistency.

Except for a few grid boxes, the regions of the continents

experienced a warming trend, that is, the cold nights

were decreasing and warm nights were increasing in

frequency, cold nights decreased more in Eurasia than

other continents, and similarly, warm nights also in-

creased more in Eurasia than other continents.

At the same time, cold days showed a decreasing

trend and warm days showed an increasing trend in the

most parts of the continents. However, the central and

southern parts of the United States presented a spatial

inconsistency with the rest of world. In these areas, the

cold days were increasing and warm days were de-

creasing in frequency, forming the so-called warming

FIG. 4. As in Fig. 3, but for relative threshold indices: (a) cold nights (TN10p), (b) cold days (TX10p), (c) warm

nights (TN90p), and (d) warm days (TX90p). The units of these indices were converted to days.
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hole (Pan et al. 2004), although the trends of these

areas were not significant statistically. Similarly, the

magnitude of trends in these indices was larger in

Eurasia than in the other continents including North

America.

Global land average extreme cold indices (cold days

and cold nights) were decreasing in frequency, ex-

treme warm indices (warm days and warm nights) were

increasing in frequency, and the change magnitude of

extreme cold indices was smaller than that of the ex-

treme warm indices. It was notable that, before the

mid-1970s, the extreme cold indices and extreme warm

indices were relatively stationary and the trends were

also not significant statistically (Table 2). However,

these indices changed quickly, and the trends were also

statistically significant after the mid-1970s (Table 2).

The last year (2015) of the study period was the year

with the highest frequency of extreme warm events

and the lowest frequency of extreme cold events in the

last 65 years.

c. Extreme value indices

As shown in Fig. 5, the four extreme value indices

(TXx, TNx, TXn, and TNn) show a warming trend in

most parts of the world, but the trends of the indices

related to the daily maximum temperature (TXx and

TXn) are spatially more variable than the indices re-

lated to daily minimum temperature (TNx and TNn). A

cooling trend of TXx could be seen once again in eastern

United States. Although the trends of TXn in central

and southern United States are negative, they are not

significant at the 0.05 level. The cold extreme events

(TXn and TNn) experienced a larger warming trend in

mid- and high-latitude regions of Northern Hemisphere

than in other regions.

The global land average time series of four extreme

value indices did not change significantly before the

mid-1970s (Table 2), but experienced a rapid increase

after the mid-1970s, which is consistent with the changes

in the other extreme temperature indices.

d. Seasonal changes

In this section, we present the seasonal analysis re-

sults for only the cold nights (TN10p; Fig. 6) and warm

days (TX90p; Fig. 7) because of the limited length of

the paper.

All seasons have warmed during the study period

1951–2015 in terms of changes in the two indices. The

frequency of cold nights was decreasing, the frequency

of warm days was increasing, and the linear trends of the

two indices are significant statistically (Figs. 6 and 7 and

Table 3). However, there was a shift near the middle of

1970s. Before that time, almost all seasons (except for

the cold nights inMAM) changed slowly, and the trend

was found to be insignificant statistically; after the

mid-1970s, the changes were faster, and the trends

were found to be significant statistically. The cold nights

in MAM exhibited a faster decreasing trend before the

mid-1970s than during the later period, indicating an

earlier warming of nighttime in boreal spring. At the

same time, warm days had a small decreasing trend in all

seasons before the mid-1970s, showing that there was a

tendency to become cooler during the daytime, although

it was not significant statistically.

The signal of the Mount Pinatubo volcano eruption

in 1991 seemed strong in the global land annual

anomaly series of warm days in JJA and SON, but was

not so obvious in other seasons (Fig. 7). The boreal

autumn and summer signal of the eruption was also

notable, to a less extent, in the annual anomaly series

of cold nights in 1992–93.

In view of spatial distribution, cold nights (Fig. 6) in

Asia (especially in DJF) have decreased more than

those in any other regions, while the decrease was

relatively small in the United States, where it even

witnessed an increasing trend in DJF (Fig. 6d), though

the trend are not significant statistically. This is con-

sistent with that reported in Alexander et al. (2006)

for cold nights.

In MAM, warm days have increased more in Asia

and Europe than in the other regions, while in JJA, the

daytime warming mainly occurred in southern Europe

and northern Africa, central and Southeast Asia, and

Australia. The frequency of warm days decreased in the

central and southern part of the United States in all the

four seasons, with the decrease being most remarkable

in JJA. An area with little change in warm days can be

seen in eastern China in summertime.

4. Discussion

a. Comparison with previous studies

Overall, our findings in this paper are similar to the

previous analyses investigating global land changes in

temperature extremes (Easterling 2000; Frich et al.

2002; Alexander et al. 2006; Caesar et al. 2006; Donat

et al. 2013a,b). The trends of the HadGHCND and

GHCNDEX datasets over the periods 1951–2011 were

reported in Donat et al. (2013b). For the sake of com-

parison, we also calculated the trend of each index over

the period 1951–2011, as shown in Table 4. In general,

the change magnitude of the extreme cold indices is

greater than the change magnitude of the extreme warm

indices in all of these datasets. For extreme value indices

and relative threshold indices, the linear trends estimated

in this study show substantial similarity to those estimated
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in the previous studies, with most of our estimates of

trend values for relative threshold indices standing be-

tween those based on the HadGHCND (Caesar et al.

2006; Donat et al. 2013b) and GHCNDEX (Donat et al.

2013b) datasets.

There are someminor differences of trends among the

three datasets, most probably due to the fact that 1) the

different criteria had been used for choosing stations

and the resulting different data coverage in the conti-

nents, 2) the different methods had been used to create

grid averages from station data, or 3) the extreme

temperature indices had been calculated from stations

and then gridded (GHCNDEX) or from gridded daily

data to calculate grid indices series (HadGHCND)

(X. Zhang et al. 2011). In this research, the temperature

indices series were first calculated from station daily

time series, and then the station indices values were

averaged to obtain the gridded fields. The differences in

the calculation order also may affect the results in cer-

tain extent and their interpretation (X. Zhang et al.

2011; Avila et al. 2015). Dunn et al. (2014) investigated

the uncertainties in global gridded datasets of climate

FIG. 5. As in Fig. 3, but for indices (a) maximum Tmax (TXx), (b) maximum Tmin (TNx), (c) minimum Tmax (TXn),

and (d) minimum Tmin (TNn).
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extremes and found that the global land time series of

the indices were only slightly affected by ‘‘parametric

uncertainty’’ (the changes of parameters within the

analytical framework), but were largely affected by

‘‘structural uncertainty’’ (the changes of overall analytical

framework). The structural uncertainty canbe estimatedby

having multiple independent teams analyze the same

dataset using distinct methods (Hartmann et al. 2013). The

trend 1.59 days decade21 of summer days in this study

is significantly greater than the trend of GHCNDEX

and HadGHCND, which may be caused by structural

uncertainty because a similar trend 1.29 days decade21

of summer days can be obtained by calculated the

GHCNDEX dataset using the same procedures used in

this study.

Some extreme events (frost days, summer days,

icing days, and tropical nights) may never occur in

certain regions. For example, frost days and icing days

occur rarely in low-latitude regions, and summer days

and tropical nights occur rarely in high latitudes and

high-elevation regions. Therefore, if the grid series of

four absolute threshold indices is all zero values, that

FIG. 6. As in Fig. 4a, but for the seasonal results of cold nights (TN10p): (a) March–May, (b) June–August,

(c) September–November, and (d) December–February.
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is, no extreme events occurred in the entire time pe-

riods, the trend of this grid cell would still be calcu-

lated, but a cross mark would be added on the grid cell,

which indicated that the trend estimate of this grid

series was not being robust statistically (Frei and Schär
2001). In this study, the global land average time series

of the four absolute threshold indices were calculated

using all the gridcell series (including all zero values

series) that have at least 90% data during 1951–2015,

which results in a more consistent global land averaged

trend with previous works (e.g., GHCNDEX and

HadGHCND), but a generally significantly larger

trend of global land averaged series can be obtained

when a more rigorous restriction (lower tolerance

for the number of zero values in the indices series)

were applied in the spatial average estimate of trend.

The latter procedure would reduce the size of the

sampling area (fewer grid boxes being sampled for

this purpose) and narrows the extents calculated.

Further experiments are needed to understand which

procedure is more robust in statistics and spatial

representativeness.

FIG. 7. As in Fig. 4d, but for the seasonal results of warm days (TX90p): (a) March–May, (b) June–August,

(c) September–November, and (d) December–February.
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This paper made a preliminary seasonal analysis for

cold nights and warm days, but the range of change

magnitude of seasonal results of this study differ

significantly from the study of Alexander et al.

(2006). For example, the value of the cold nights time

series in this study varies from 26 to 6, but the study

of Alexander et al. (2006) is from 220 to 20. In this

study, cold nights and warm days were first calculated

on basis of monthly percentages, then the monthly

percentages were converted to monthly days, and at

last, the monthly values (days) were summed to ob-

tain the seasonal and annual values (days). The an-

nual values (days) are the sum of four seasonal values

(days). Consequently, the range of change magni-

tude of annual cold night and warm day series should

be greater than the seasonal ones. In Alexander et al.

(2006); however, the magnitudes of annual and sea-

sonal change of the two indices series are similar.

This difference may also be related to the differ-

ent grid coverage, and the procedures on how the

anomalies were calculated and how the data were

averaged.

b. ‘‘Warming hole’’ in the United States

Over the past 65 years, most regions of the world have

experienced warming trends, but the central and south-

eastern part of the United States experienced no signifi-

cant change or a slight cooling trend, characterized by an

increase in cold extremes indices and a decrease in warm

extremes indices especially for those related to the daily

maximum temperature. The seasonal trends of warm

days (Fig. 7) showed that the cooling mainly appeared in

the daytime during boreal summer and autumn (i.e., JJA

and SON), but in the other two seasons (MAM and

DJF), only a few grid boxes experienced a cooling trend

in these areas and all of the trends were not statistically

significant.

Folland et al. (2001) found that central United States

showed a cooling trend over the period 1976–2000 for

the summer season. Pan et al. (2004) named this cooling

TABLE 3. Linear trends in temperature extremes indices during 1951–75, 1976–2015, and 1951–2015. The units of cold nights (TN10p),

cold days (TX10p), warm nights (TN90p), and warm days (TX90p) were converted to days. Trends of at least 5% significance are shown

in bold.

Trend

Index 1951–75 1976–2015 1951–2015 Units

Cold nights (TN10p) MAM 21.40 20.84 21.18 days decade21

JJA 0.14 20.89 20.97 days decade21

SON 20.32 21.19 21.03 days decade21

DJF 20.29 20.92 20.98 days decade21

Warm days (TX90p) MAM 20.20 1.70 1.03 days decade21

JJA 20.49 2.00 1.11 days decade21

SON 20.70 1.93 1.10 days decade21

DJF 20.39 1.07 0.69 days decade21

TABLE 4. Trend estimates for global average series of 12 extreme temperature indices over the periods 1951–2011. Trends of at least 5%

significance are shown in bold. To compare with HadGHCND (Caesar et al. 2006; Donat et al. 2013b) and GHCNDEX (Donat et al.

2013b), the units of cold nights (TN10p), cold days (TX10p), warm nights (TN90p), and warm days (TX90p) were not converted to

days here.

Decadal trend: 1951–2011

Index GHCNDEX HadGHCND GLSDT Unit

Frost day (FD) 21.80 21.72 21.95 days decade21

Summer day (SU) 0.47 0.54 1.59 days decade21

Icing days (ID) 21.23 21.18 21.09 days decade21

Tropical night (TR) 0.91 1.05 1.13 days decade21

Maximum Tmax (TXx) 0.11 0.10 0.12 8C decade21

Maximum Tmin (TNx) 0.12 0.17 0.19 8C decade21

Minimum Tmin (TXn) 0.28 0.27 0.29 8C decade21

Minimum Tmin (TNn) 0.45 0.39 0.40 8C decade21

Cold night (TN10p) 21.09 21.26 21.09 % decade21

Cold day (TX10p) 20.67 20.86 20.76 % decade21

Warm night (TN90p) 1.17 1.79 1.33 % decade21

Warm day (TX90p) 0.80 1.14 0.95 % decade21
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area in summer as ‘‘warming hole’’ and argued that the

changes in low-level atmospheric circulation might have

supplied more soil moisture in summer, which would

increase the summer evapotranspiration and repress

the daily maximum temperatures. Kunkel et al. (2006)

found that central United States temperature and North

Atlantic sea surface temperatures are positively corre-

lated, and central United States temperature and central

equatorial Pacific sea surface temperature are nega-

tively correlated. The long-term cooling in the North

Atlantic and warming in the central equatorial Pacific

were thus regarded as the main reason for the summer

cooling in the central and eastern United States.

Leibensperger et al. (2012) found that radiative forcing

of U.S. anthropogenic aerosols caused the daily maxi-

mum temperature of summer and autumn in the central

United States to decline in the period 1970–90. The

cooling effect of anthropogenic aerosol reduced surface

evaporation, which reduced the precipitation on the east

coast of theUnited States, but increased the air moisture

flowing northward from the Gulf of Mexico that would

increase the cloud cover and precipitation in the central

United States (Leibensperger et al. 2012).

Our analysis results showed that the cooling of the

United States mainly appeared in the daytime of bo-

real summer and autumn supports the claim that the

weakening daytime solar radiation, or the interaction

between solar radiation and soil moisture, may have

played an important role in forming the cooling area in

the last 65 years. The declining solar radiation may

have been caused by the increasing cloudiness rather

than increasing aerosol concentration, because aero-

sol emission in the region had been controlled to a

large degree (Li et al. 2011). A smaller cooling area or

no significant change area is also visible in eastern

China during boreal summer, and it may have been

caused by the daytime weakening of solar radiation

most probably related to the combined effect of in-

creasing aerosol emission and cloudiness, with the

rising aerosol concentration playing a larger role in

northern part of the region (Qian et al. 2003; Zhang

et al. 2007; Ding and Ren 2008; Li et al. 2011).

c. Influence of stratospheric aerosol

Earth’s radiation balance was affected by aerosols

that absorb upward terrestrial thermal radiation and

reflect sunlight to space. The stratospheric aerosol

optical depth is one of the principle parameters af-

fecting the Earth surface climate (Lacis et al. 1992; Sato

et al. 1993). Figures 3–7 show that the stratospheric

aerosol optical depth might have an important impact

on interannual variability of the extreme temperature

indices. When the stratospheric aerosol optical depth

reached a peak, the frequency of cold extreme events

would increase, and the frequency of warm extreme

events would decrease, especially for the daytime ex-

tremes of boreal summer and autumn. A good example is

the abnormally low level of annual and summer daytime

warm event frequency in 1992–93 following the Mount

Pinatubo volcano eruption in 1991 (Figs. 3–7).

We calculated the Spearman’s rank correlation

(rho) (Best and Roberts 1975; Hollander and Wofle

1973) between global land average extreme indices

and the stratospheric aerosol optical depth after re-

moving the linear trends. As shown in Fig. 8, it can

be clearly seen that the stratospheric aerosol optical

depths were positively correlated with cold ex-

treme threshold indices (TN10p, ID, TX10p, and FD)

and were negatively correlated with warm extreme

threshold indices (TX90p, TN90p, SU, and TR), and

the absolute magnitude of correlation coefficient with

warm extremes indices (TX90p, TN90p, SU, and TR)

are larger and are more significant statistically. The

higher the stratospheric aerosol optical depth, the

cooler the daytime surface air during warm seasons

of Northern Hemisphere. The indices associated

with temperature extreme values (TNx, TXx, TNn, and

TXn) were all negatively correlated with stratospheric

aerosol optical depth regardless it is warm indices or

cold indices, and the indices of TNx and TXx (warm

indices) have a more significant negative correlation

with aerosol optical depth than the indices of TNn and

TXn (cold indices). The reason for the association is

that more stratospheric aerosols would absorb and reflect

more solar radiation in stratosphere, leading to less radi-

ation received in the surface and an abnormally cooling

condition during daytime. Of course, the interannual to

decadal variability is the result of the interaction of many

factors including stratospheric aerosols.

FIG. 8. The Spearman’s rank correlation (rho) between extreme

temperature indices and stratospheric aerosol optical depth at

550 nm. Correlations (rho) of at least 5% significance are filled with

grid lines.
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d. Uncertainty of trend estimates

In this study, the homogeneity test was conducted by

using RHtestsV4 (Wang 2008a,b; Wang and Feng 2013)

software and the station series identified as inhomoge-

neous were discarded. It is inevitable to exclude some

potential natural climate shifts because there is no fur-

ther analysis for these step changes due to the lack of

metadata and the observations from densely stations. To

avoid this ‘‘false exclusion’’ as much as possible, a higher

confidence threshold 99.99% was used for homogeneity

testing. Meanwhile, this method was designed to detect

only step changes (sudden shifts in the mean) in the data

series but not to detect gradual temperature changes,

including those related to urbanization effects and

gradual changes in the local observing environment.

It is well known that the urban heat island effect can

cause the urban surface air temperature to be higher

than the suburb or rural areas. Meanwhile, a large

number of stations are located in or near urban areas,

despite the urban areas only accounting for a small

portion (,1%) of the global land. As a result, if these

observations of temperature at urban stations are used

to analyze mean temperature and extreme temperature

change, the warming trends can be overestimated not

only for individual stations and grid boxes but also for

the regional average series (Ren 2015).

Urbanization effects differ from region to region due

to the different speed of urban development and the

specifically designed locations of the observational sites

in different countries. It is possible that, in developed

areas, the urban infrastructure of well-established cities

did not expand in the last decades. Although the sta-

tions located in a city center observed a warmer cli-

mate than those located in rural stations, the trend for

the decades might be similar, because the influences on

urban temperature have not changed over this period

(Peterson 2003; Jones et al. 2008; Ren 2015). However,

in developing areas, such as the mainland of China and

western Asian countries, the urbanization effect on

temperature trends might not be negligible due to the

rapid urban development (Zhou et al. 2004; Ren et al.

2008; Zhou and Ren 2011; Li andHuang 2013; Ren and

Zhou 2014; Sun et al. 2016). It is unclear for the time

being to what extents the urbanization processes had

affected the estimated trends of the global land aver-

age annual and seasonal mean extreme temperature

indices as reported in this paper. An attempt could be

made to tackle this issue in the future.

On a regional scale, however, there had been a couple

of studies examining the urbanization effect on extreme

temperature trends (Zhou andRen 2009, 2011; L. Zhang

et al. 2011; Ren and Zhou 2014). Zhou and Ren (2011)

found that urbanization effect on long-term trends of

the Tmin-related extreme temperature indices of na-

tional stations in North China was rather large and

statistically highly significant for the period 1961–2008,

and the urbanization contributions for the regional

average annual series of frost days, tropical nights,

cold nights, and warm nights reached 45%, 64%, 44%,

and 48% respectively. Taking mainland of China as a

whole, the urbanization also has a statistically significant

effect on the above-mentioned four extreme temperature

indices series of national stations during the same time

period, and the urbanization accounts formore than 10%,

38%, 17%, and 26% of the overall trends, respectively

(Ren and Zhou 2014).

Therefore, it is possible that the global land average

annual and seasonal extreme temperature indices

series over the last 65 years contain some degree of

urbanization effects, in particular in developing re-

gions. However, the urbanization may have little ef-

fects for the other regions when compared to those

found for the mainland of China, mainly due to the

relatively slow development of urban areas in the re-

gions outside East Asia in the last 65 years.

Another major uncertainty source is the data gaps in

different periods in Africa, India, and South America.

The number of available temperature stations reached

the maximum in the late 1970s and started to decline

since then, as shown in Figs. 1a and 1c. Furthermore,

these data gaps were changing over time, leading to a

temporal change in the spatial coverage of observations.

These would make the accurate assessment and robust

detection of extreme temperature change in these re-

gions particularly difficult, and also result in another

systematic bias in the estimate of the global land average

extreme temperature indices trends. This bias needs to

be investigated in the following works. It is generally

deemed, however, that the bias in the global land

average annual mean surface air temperature series

due to the data coverage is small compared to the

overall trends estimated for various time periods of

the last century (Hansen et al. 2006; Lawrimore et al.

2011; Jones et al. 2012).

However, the effect of the daily temperature data

coverage and its change with time, in particular in

Africa, southern parts of Asia, Arctic regions, and South

America, on trend estimates of global land average ex-

treme temperature indices still needs to be examined.

As there are not any daily temperature data in most grid

boxes in Africa and South America, all the extreme

temperature indices series could not be calculated.

Before the influence of data coverage on the estimated

trends of extreme temperature indices is addressed, it

is reasonable to assume that the current global land

15 DECEMBER 2019 ZHANG ET AL . 8505



analysis results, including those reported in this paper,

heavily reflect the long-term changes of average ex-

treme temperature indices of Northern Hemispheric

continents, especially those of the data-dense Europe,

East Asia, and North America.

5. Conclusions

In this paper, we presented a new analysis of global

land extreme temperature indices changes based on an

integrated global land surface daily temperature dataset

(GLSDT-V1.0) recently developed by the National

Meteorological Information Center, CMA. Our main

conclusions are as follows:

1) The global land average annual and seasonal mean

extreme temperature indices all experienced signifi-

cant long-term changes over the period 1951–2015,

with cold threshold indices (frost days, icing days, cold

days, and cold nights) decreasing and warm threshold

indices (summer days, tropical nights, warm days and

warm nights) increasing. The extreme temperature

indices based on dailyminimum temperature generally

had a stronger and more significant trend than those

based on daily maximum temperature.

2) The most significant warming in most extreme tem-

perature indices occurred after the mid-1970s, and

before the mid-1970s the global land average indices

series generally showed no significant change. Most

parts of the global land experienced significant warm-

ing trends over the period 1951–2015 as a whole, and

the largest trends appeared in mid- to high latitudes of

the Eurasian continent.

3) The seasonal analysis showed that, during the period of

1951–2015, the global land average annual and seasonal

frequency of cold nights and warm days experienced

similarly large and significant changes, with the sea-

sonal cold nights decreasing at rates from 20.97

to 21.18 days decade21, and the seasonal warm days

increasing at rates from 0.69 to 1.11 days decade21.

The most significant seasonal trends of the two

extreme indices occurred in the period of 1976–

2015, and the pre-1976 seasonal changes were

generally small and statistically insignificant.

4) Most parts of the world experienced warming during

the period 1951–2015. However, in the summer and

autumn of central and southeastern United States,

the indices calculated from the daily maximum

temperature did not experience the warming trend,

resulting in the so-called warming hole. The warm-

season daytime cooling phenomenon also appeared

in eastern China to a lesser extent.

5) In most of the Tmax-based and warm extreme temper-

ature indices series, the signal of volcano eruptions

was notable, with the influence of the 1991 Pinatubo

eruption on the extreme temperature indices particu-

larly clear for warm days, cold days, and summer days

in the boreal summer and autumn in 1992–93.
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