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Abstract Urbanization has led to a significant urban heat island (UHI) effect in Beijing
in recent years. At the same time, air pollution caused by a large number of fine particles
significantly influences the atmospheric environment, urban climate, and human health. The
distribution of fine particulate matter (PM2.5) concentration and its relationship with the UHI
effect in the Beijing area are analyzed based on station-observed hourly data from 2012 to
2016.We conclude that, (1) in the last five years, the surface concentrations of PM2.5 averaged
for urban and rural sites in and around Beijing are 63.2 and 40.7 µg m−3, respectively, with
significant differences between urban and rural sites (�PM2.5) at the seasonal, monthly and
daily scales observed; (2) there is a large correlation between �PM2.5 and the UHI intensity
defined as the differences in the mean (�Tave), minimum (�Tmin), and maximum (�Tmax)
temperatures between urban and rural sites. The correlation between �PM2.5 and �Tmin

(�Tmax) is the highest (lowest); (3) a Granger causality analysis further shows that �PM2.5

and �Tmin are most correlated for a lag of 1–2 days, while the correlation between �PM2.5

and �Tave is lower; there is no causal relationship between �PM2.5 and �Tmax; (4) a case
analysis shows that downwards shortwave radiation at the surface decreases with an increase
in PM2.5 concentration, leading to a weaker UHI intensity during the daytime. During the
night, the outgoing longwave radiation from the surface decreases due to the presence of

B Yuanjian Yang
yyj1985@nuist.edu.cn

1 Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China

2 Department of Atmospheric Science, School of Environmental Studies, China University of
Geosciences, Wuhan 430074, China

3 Laboratory for Climate Studies, National Climate Center, China Meteorological
Administration, Beijing 100081, China

4 School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science
and Technology, Nanjing 210044, China

5 Anhui Climate Center, Hefei 230031, China

6 School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui
230026, China

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10546-018-0362-6&domain=pdf
http://orcid.org/0000-0003-3486-6286


Z. Zheng et al.

daytime pollutants, the net effect of which is a slower cooling rate during the night in cities
than in the suburbs, leading to a larger �Tmin.

Keywords Beijing pollution · Fine particulate matter · PM2.5 concentration · Urban heat
island

1 Introduction

The urban heat island (UHI) is a microclimatic phenomenon caused by human activities and
their effect on the land-surface temperature. The UHI phenomenon can be quantified using
the UHI intensity, which is defined as the temperature difference between urban and rural
areas, and is associated with many factors, such as the underlying surface roughness, surface
albedo, and anthropogenic heating (Yang et al. 2013a, b; Li and Bouzeid 2014; Li et al.
2014; Ren 2015). Since Howard discovered the UHI effect in London (Howard 1883), a vast
number of studies have been made to identify the causes of UHI effects, to understand the
detailed spatial and temporal variations, and to quantify the impacts of the UHI effect on the
surface energy balance, atmospheric boundary-layer structures, heatwaves, and precipitation
processes (Weng and Yang 2004; Ren et al. 2007; Lin et al. 2008; Clinton and Gong 2013;
Yang et al. 2013a, b; Li and Bouzeid 2013, 2014; Zhao et al. 2014).

The increase in local temperature resulting from the UHI effect can not only catalyze
atmospheric photochemical reactions and lead to an increase in serious air pollution, but also
induce the reproduction of microorganisms, such as bacteria and pathogens, and increase the
speed of pathopoiesis (Stedman 2004; Anderson and Bell 2011). The importance of interac-
tions between urban climates and biogeochemical cycles has been increasingly recognized,
and thus the interactions have been the subject of many studies (Jacobson 1998; Crutzen
2004). Atmospheric particulate pollution is one of the major environmental factors endan-
gering human health. Due to different underlying surface characteristics and differences in
the fine-particle concentration and type between urban and rural areas, temperature changes
resulting from aerosol-induced radiative forcing differ for urban and rural areas, which may
further change the UHI intensity. While haze may intensify the UHI effect by absorbing solar
radiation, aerosols may also cool the near-surface atmosphere by reflecting solar radiation.
For instance, Zhang (2003) found that pollutants in the atmosphere have evident radiative
effects, with a positive feedback between the atmospheric inversion layer and the warming
effect of pollutants during the day through the absorption of solar radiation, which plays a
leading role in the formation and development of the daytime atmospheric inversion layer.
Zheng et al. (2006) noted that the longwave effect of aerosols at night may increase the near-
ground temperature, but cool the low-level atmosphere. The shortwave effect of aerosols
causes the near-surface layer to be significantly warmer during the daytime, leading to the
enhancement of the UHI effect. Zhang et al. (2011) also found that aerosols over urban
areas at night can weaken the upwards longwave radiation at the surface and slow down
the cooling effect, which enhances the UHI effect. Based on model simulations, Miao et al.
(2015a) noted that the surface net radiation and the sensible heat flux are reduced by aerosols
by absorbing and scattering solar radiation in the atmosphere over Beijing, which increases
the boundary-layer temperature, leading to a more stable and shallower boundary layer, giv-
ing higher PM2.5 concentrations at the surface in the morning. Recently, Cao et al. (2016)
attempted to isolate these conflicting effects with satellite observations and climate-model
simulations, and estimated the corresponding relationship between pollutant concentrations

123

Author's personal copy



Relationship Between Fine-Particle Pollution and the Urban Heat…

Fig. 1 Topography map of northern China and a map of observation-station locations in Beijing, whose basic
information can be seen in Table 1 (red, yellow and blue colours indicate high-, middle- and low-population-
density areas)

and UHI intensities in different cities in China. They found that, in more polluted areas,
the UHI intensity is generally greater, with this phenomenon particularly evident in several
semi-arid cities. Therefore, the relationship between fine-particle concentrations and the UHI
intensity requires further investigation in megacities in China.

The Beijing–Tianjin–Hebei region is China’s political, cultural and economic centre
(Fig. 1). The atmospheric pollution level in Beijing, which is the region’s largest and most
important city, has continued to be high in recent years, with an elevated concentration in
fine particulate matter (e.g., Zhao et al. 2014; Li et al. 2015; Lv et al. 2016; Miao et al. 2016).
The problems associated with air pollution, such as the deterioration in human health and
an increase in traffic, have caused a wide concern to both governmental departments and
the public (An et al. 2007; Chen et al. 2013; San Martini et al. 2015). Extreme air-pollution
incidents occur frequently in Beijing, and are linked not only to urbanization and emissions,
but also to complex topographies and atmospheric circulations (Miao et al. 2014, 2015b, c).
As rapid urbanization has significantly increased the UHI effect in Beijing (Liu et al. 2007;
Ren et al. 2007; Yan et al.2010; Yang et al. 2013a), further investigation of the relationship
between the UHI effect and fine-particle pollution must provide a practical reference for the
establishment of optimal regional eco-environments. Because pseudo-correlated phenomena
may occur, it is not possible to determine a credible causal relationship between these two
factors when considering only a correlation coefficient. In this paper, the Granger causality
method (Granger 1980) is used to analyze and test the relationship between fine particulate
matter (PM2.5) and UHI intensity in Beijing. Variations in hourly observed PM2.5 concen-
trations at the surface are analyzed at different time scales, with the effects on UHI intensity
also investigated in Beijing.

2 Data and Methods

2.1 Data

Unlike high-density, automatic-weather-station networks, air-quality observations are rela-
tively sparse, and lack historical records over long periods. Here, PM2.5 concentration data
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Table 1 Basic information of observation stations

Station type Station name Elevation (m) Observation

Urban Baolian 55.8 PM2.5

Chedaogou 56 Air temperature at 2 m

Institute of Atmospheric
Physics Tower

49 Air temperature at 2 m,
sensible and latent heat
fluxes, turbulent
kinetic energy

Rural Miyun 73.4 Sensible and latent heat
fluxes

Shangdianzi 286.5 PM2.5 , air temperature
at 2 m, radiation flux

from the Baolian and the Shangdianzi stations for 2012–2016 are presented (see Table 1 and
Fig. 1). The two stations have been well maintained by the Beijing Environmental Meteoro-
logical Center, producing reliable observations with a 1400a-type tapered element oscillating
microbalance manufactured by the R&P Corporation, USA, which measures PM2.5 mass
concentration at a temporal resolution of 1 h. Quality control was conducted to remove any
unrealistic records. The Baolian station (39.90°N, 116.29°E) is located near the BeijingWest
Third Ring Road, which is used to represent the Beijing urban area. The Shangdianzi station
(40.65°N, 117.10°E) is located approximately 130 km north-east of Beijing in Shangdian
Village, Miyun County (see Fig. 1), and is the only regional atmospheric background station
in North China. As pollution sources are lacking near this site, with its surrounding environ-
ment well protected and with little influence of urbanization, the Shangdianzi station can be
used to represent the surrounding rural area of Beijing.

Since the Shangdianzi station is located near amountainous area north-west of Beijing, the
local topography may have an impact on the surrounding meteorological conditions, but the
local-scale circulation is generally weak. For example, as the average mountain-valley wind
speed in Beijing is<0.2 m s−1, its impact on the multiyear average should not be significant
(Zheng et al. 2018). More importantly, the Shangdianzi station has the longest observational
period and the most rigorous observational quality compared with other rural stations. There
are no continuous observational data of the same length in areas such as the southern plain of
Beijing; even if observations were made there, the data would probably not be representative
of the background due to the close proximity of major emission sources in Hebei Province.
Based on these reasons, previous studies have also used the Shangdianzi station as a typical
rural station to analyze the differences in urban and rural PM2.5 concentrations (Miao et al.
2016).

Air-temperature data at 2 m above ground level with a temporal resolution of 1 h from
automatic meteorological stations during the same period are available from the Beijing
Meteorological Information Center, with the Chedaogou station selected for the urban area
(see Table 1 and Fig. 1), which is 1.3 km north of the Baolian station, with similar surface
conditions. For the rural area, the Shangdianzi station is used, which is located at an altitude
of 286 m, and so the air temperature was adjusted to the same altitude as the Chedaogou
station using a lapse rate of −0.65 K (100 m)−1 (Zheng et al. 2017). To investigate the effect
of fine-particulate matter on the UHI effect, flux observations were used from the 325-m
tower at the Institute of Atmospheric Physics (39.97°N, 116.37°E) and the Miyun weather
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station (40.36°N, 116.87°E), which are located in high- and low-density urban and rural areas
in and outside Beijing, respectively (see Fig. 1 and Table 1).

Satellite-estimated radiation datasets are from the Clouds and Earth’s Radiant Energy
System (CERES) on board the Terra and Aqua satellites, and have been widely used in
various applications (Yan et al. 2011; Pan et al. 2015). Here, the CERES_SYN1deg_Ed3A
dataset (with a spatial resolution of 1°×1°) available at http://ceres.larc.nasa.gov/order_d
ata.php was used to provide upwards/downwards longwave and shortwave radiation fluxes
under all-sky conditions. Radiation fluxes at the urban/rural sites were calculated by values
available from the CERES grid closest to the site.

2.2 Methods

In climate analysis and research, several causal or physical connections between two vari-
ables are generally assumed when their correlation coefficient reaches a certain significance
level. However, this assumption may imply a pseudo-correlation because self-correlation in
a data sequence can affect the cross-correlation of different data sequences (Joliffe 1983). In
recent years, significant advancement has been made in the study of climate-change detec-
tion and attribution, with several of such techniques developed frommathematical principles
to identify the patterns of climate change (Houghton et al. 2001; Smith et al. 2003), and
can generally be divided into two methods: the multiple-analysis method and the Bayesian-
inference method. As the Bayesian-inference method can incorporate different sources of
data, it receives more attention, but both methods still ignore self-variation when investigat-
ing the relationship between two variables.

As the Granger causality test considers not only the relationship between variables but
also self-variations, it can effectively avoid the false-regression phenomenon, which gives it
advantages in attribution analyses (Granger 1980). Granger’s causal-analysis theory was first
formulated by Clive W. J. Granger, and has become popular in economic analyses, signal
processing and other fields for its simplicity and practicality. Cao et al. (2008) confirmed its
usability in climatological studies, and further recommended it as a new method for climate-
change detection and attribution analyses. Since then, the Granger causality test has been
widely applied in climate-change research, such as climate-index attribution, urbanization
effects, and temperature-trend analyses (Triacca 2001, 2005; Wang et al. 2004; Mosedale
et al. 2006; Yu et al. 2016).

The Granger causality test is based on the fact that it does not necessarily ascertain a
causal relationship between two variables (e.g., x and y) when the two variables are highly
correlated, because the high correlation of x and ymay be caused by a third factor; therefore,
the causal relationship between x and y should be tested. The Granger causality test is a
statistical-hypothesis test that determines whether one time series x is useful in forecasting
another series y. First, we examine the extent to which the current value of y can be explained
using a historical value of y; then, we investigate whether the interpretation can be improved
by considering a lag value of x. The variable x is said to Granger-cause y if it can be shown
that the x values provide statistically significant information regarding the potential values
of y. The regression model is

xt �
n∑

i�1

λi xt−i+
n∑

j�1

μ j yt− j + u1t , (1)

yt �
m∑

i�1

αi yt−i+
m∑

j�1

β j xt− j + u2t , (2)
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where xt and yt represent two time series, u1t and u2t are theoretically uncorrelated error
terms, and m and n indicate the order of the lags. The null hypotheses of Eqs. 1 and 2 are μ1

�μ2 �· · · �μn = 0 and β1 �β2 �· · · �βm �0, respectively. If β j is significantly unequal
to zero, and μj is significantly equal to zero (in general), then it is believed that there is a
single effect caused by x on y (i.e., x is the cause of the change in y), with the converse also
true (i.e., y causes the change inx). In addition, there is a two-way causal relationship between
x and y if both β j and μj are significantly unequal to zero. The F-statistic

F � (SSEr − SSEu)/k

SSEu/(T − 2k)
(3)

can be used for the above tests, where SSEr represents the residual sum of squares when
the null hypothesis is applied, whileSSEu represents the residual sum of squares without
any constraints, kindicates the maximum lag period, and T represents the sample size. We
can calculate, with confidence, the probability using the p value from the F-statistic. For a
given significance level α (α �0.05 here), if the p value is less than α, the null hypothesis is
rejected, and x is said to Granger-cause y.

As stationarity of the original series is a prerequisite for the Granger causality test, which
may otherwise lead to a false regression, a stationary test must be performed first, such as
the augmented Dickey–Fuller test, which is a common method used to check the stationarity
of a data series. The corresponding regression model is

�xt � α + βt + ρxt−1 +
P∑

j�1

λ j�xt− j + ut , (4)

where xt represents the original sequence, xt−1 represents the original sequence with a lag of
one timestep, �xt represents the first-order differenced sequence, �xt− j represents the first-
order differenced sequence of j lag lengths, α is a constant term, with β t , ρ and λj regression
coefficients, P represents the lag length, and ut is the error term. The null hypothesis of the
augmented Dickey–Fuller test is ρ =0, which means that the sequence has a unit root, and is
thus non-stationary. If the null hypothesis is rejected, then the sequence is stationary. A non-
stationary time sequence requires some transformation. Generally, a stationary sequence
can be obtained by several differential transformations, which do not change the causal
relationship between the original variables.

3 Results

3.1 Urban–Rural Difference in PM2.5 Mass Concentration in Beijing

Figure 2 shows the 5-year interannual variation from 2012 to 2016 in PM2.5 mass concen-
tration at the Beijing Baolian urban and Shangdianzi rural sites, with average concentrations
of PM2.5 of 63.2 and 40.7 µg m−3, respectively. While the Shangdianzi station is far away
from the urban area, the air there is relatively clean, but the average annual PM2.5 mass
concentration is still higher than the national secondary standard (35 µg m−3), with data
from the urban station showing a worse air quality. In the most recent five years, due to the
government’s environmental protection policy, the PM2.5 mass concentration in Beijing has
steadily decreased, indicating that air quality is improving. In particular, as the decrease in
PM2.5 concentration in urban areas is more pronounced than in rural areas, the urban–rural
PM2.5 mass-concentration difference is gradually decreasing.
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Fig. 2 Interannual variation of PM2.5 mass concentration in the Beijing area

According to Cai et al. (2017), global warming has led to an increase in the occurrence
of atmospheric stagnation in the North China Plain, and weather conditions have become
increasingly conducive to haze formation. However, air quality has gradually improved even
under such circumstances, which is related to the series of environmental protectionmeasures
taken by the local government. For example, Beijing started to limit the number of motorized
vehicles in 2008, and began to control the increase in motor vehicles in 2011. In addition, the
government has implemented stricter environmental policies with neighbouring provinces
and municipalities since 2013, and emissions have decreased. Figure 3 presents the diurnal
and monthly variations in PM2.5 mass concentrations in the urban and rural areas of Beijing,
indicating the PM2.5 mass concentration for the urban area varies significantly throughout
an average year. From the perspective of a seasonal variation, the highest and second highest
PM2.5 concentrations occur in winter and autumn, respectively, followed by spring and sum-
mer, but the PM2.5 concentrations in autumn and winter are drastically higher. Specifically,
the PM2.5 mass concentration reaches its peak (>80µg m−3) in December and January, with
relatively lower values in the spring and summer months. For example, the mean value of
PM2.5 concentration in August is 42.1 µg m−3, which is only approximately half of the peak
annual value. According to previous studies (Miao et al. 2015d; San Martini et al. 2015;Tang
et al. 2016; Li et al. 2017), the low concentration of PM2.5 in spring is related to the large
average wind speeds, and an increase in high-wind-speed days during the period, while low
values in July, August and September primarily correspond to wet deposition resulting from
summer precipitation.

Compared with urban areas, the seasonal variation in PM2.5 concentration at the rural
station is not as significant. The urban–rural difference in the PM2.5 mass concentration is
large in autumn and winter, amounting to 44 µg m−3 in January, which is larger than the
multiyear average (42.2µgm−3) in the rural area. During spring and summer, the urban–rural
difference in the PM2.5 mass concentration is small (≈10 µg m−3 in July, August and
September). Such a variation is probably related to the excessive emission of pollutants in
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Fig. 3 a Monthly and daily variation b of PM2.5 concentration in Beijing urban (brown line) and rural (blue
line) areas, and the urban–rural PM2.5 concentration difference (blue bars)

populated urban areas during the heating season (which usually begins 15 November and
ends 15 March of the following year). In addition, the stable atmospheric circulation in
autumn and winter makes it more difficult for the diffusion of pollutants. However, during
summer, the boundary-layer height usually increases, and atmospheric conditions enable
the enhanced diffusion of pollutants compared with that in winter, which may contribute
to the reduced urban–rural difference in the PM2.5 mass concentration in summer (Miao
et al. 2015d). The difference in the seasonal variations in PM2.5 can be explained by autumn
and winter being traditional heating and coal-burning seasons in northern China. In urban
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areas, the concentrations of PM2.5 in autumn and winter are relatively high because of the
concentrated population and the resulting increased energy consumption, while the heating
energy consumption is lower in rural areas because of a smaller population.

The average temporal variation in the PM2.5 concentration at the urban station from 2012
to 2016 behaves in a semi-diurnal manner (Fig. 3b), with the first daily minimum appearing
at 0600–0700 local time (LT), and the first concentration maximum at 1100 LT, before
decreasing to a minimum at approximately 1600 LT, and reaching the second maximum at
2300 LT. Such a trend is consistent with previous studies on Beijing and other cities, and
corresponds to the daily variation in anthropogenic activities, as well as to turbulence in
the atmospheric boundary layer (Miao et al. 2015a). In contrast, the average hourly PM2.5

concentration at the rural station is significantly lower than that in the urban area, indicating
a diurnal variation with a single peak. In contrast to the urban area, the rural area has the
lowest concentration at 0900 LT, which increases from 0900 to 1300 LT before levelling off
from 1400 to 1600 LT, and then increasing after 1600 LT, and reaching a maximum at 1900
LT. The evolution of the PM2.5 concentration at the rural station at night is similar to that at
the urban station.

According to previous research (e.g., San Martini et al. 2015; Tang et al. 2016), the semi-
diurnal variations in PM concentration at different cities during different seasons may result
from different atmospheric diffusion conditions, which are related to various geographical
and meteorological factors, as well as the different emission sources, with the semi-diurnal
variation in the PM2.5 concentration in Beijing likely the result of the following factors. The
first peak in PM2.5 concentration in the urban area during the daytime is related to the morn-
ing rush hour corresponding to the increase in the number of vehicles and emissions from
factories. The second peak at night is related to the increased number of vehicles after work,
large trucks entering the city at night, as well as the diurnal variations in meteorological con-
ditions (i.e., reduced boundary-layer height and weaker turbulence) and chemical-reaction
intensity, which are conducive conditions to the accumulation and secondary generation of
urban PM2.5, respectively. Due to reduced anthropogenic activities in rural areas, the con-
centration of PM2.5 in the daytime fluctuates slightly because of mainly turbulent transport.
Compared with the daytime peak in urban areas, the concentration increases significantly
from the morning until late afternoon, with a peak at approximately 1900 LT.

3.2 The Correlation Between the Urban–Rural Difference in PM2.5 Mass
Concentration and Urban-Heat-Island Intensity

Figure 4 shows the monthly mean urban–rural difference in PM2.5 mass concentration
�PM2.5 and the UHI intensity �T in the Beijing area from 2012 to 2016, indicating a
consistent correlation between the two variables at the monthly scale. For example, �PM2.5

and �T values are both larger in autumn and winter and smaller in spring and summer.
However, a high monthly �PM2.5 value does not necessarily correspond to a high monthly
�T value. For example, the magnitude of �PM2.5 is larger in January than in December,
while the magnitude of �T is not, with a similar pattern also occurring in April and Septem-
ber. The discrepancy at the monthly scale indicates that �PM2.5 and �T values can vary
asynchronously due to other factors, including the impacts of local synoptic processes and
temporary government restrictions.

Some studies have shown that the UHI effect on metropolitan areas has an obvious asym-
metry for different temperature indexes: the UHI effect on the daily minimum temperature
(daily maximum temperature) is the strongest (weakest), with the UHI effect having an inter-
mediate impact on the daily mean temperature (Liu et al. 2007; Yang et al. 2013a, b). In
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Fig. 4 Themonthlymean urban–rural difference of PM2.5 mass concentration (�PM2.5) and theUHI intensity
�T in the Beijing area

Fig. 5 The daily-averaged�PM2.5 and�Tave (daily-averaged temperature difference between the urban and
rural areas), �Tmax (daily-maximum temperature difference between the urban and rural areas), and �Tmin
values (daily-minimum temperature difference between the urban and rural areas)

addition, there are significant diurnal and seasonal variations in the UHI intensity (Liu et al.
2007; Yang et al. 2013a). Figure 5 shows the correlation between daily mean �PM2.5 and
�Tave (i.e., the daily average temperature difference between urban and rural areas), �Tmax

(i.e., the daily maximum temperature difference between urban and rural areas) and �Tmin
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Table 2 The correlation coefficient between �PM2.5 and �T values (* represents significance at the 0.01
level)

�PM2.5 The same day Lag of 1 day Lag of 2 days Lag of 3 days

Annual Spring Summer Autumn Winter

�Tave 0.087 0.304* 0.109 0.270* 0.344* 0.310* 0.251* 0.205*

�Tmin 0.454* 0.304* 0.342* 0.362* 0.378* 0.314* 0.302* 0.265*

�Tmax 0.069 0.100 0.059 0.010 0.090 0.054 0.084 0.157*

values (i.e., the daily minimum temperature difference between urban and rural areas), indi-
cating the largest correlation coefficient (0.45) between the daily mean �PM2.5 and �Tmin

values, followed by the correlation coefficient between the daily mean �PM2.5 and �Tave

of 0.37, while the correlation coefficient between the daily mean �PM2.5 concentration and
�Tmax values is only 0.07. For the winter season, the correlation coefficient between the
�PM2.5 concentration and the UHI intensity is the highest, resulting in correlation coeffi-
cients of 0.38, 0.34 and 0.09 for �Tmin, �Tave and �Tmax , respectively. The correlation
coefficient between the �PM2.5 concentration and the UHI intensity is lowest during spring.

Previous studies have also indicated a relationship between the PM2.5 mass concentration
in urban areas and the UHI intensity, such as that byWu et al. (2014). Here, we also calculated
and obtained correlation coefficients between the PM2.5 concentration in urban areas and
�Tave, �Tmax and �Tmin values in the Beijing area of 0.24, 0.04 and 0.33, respectively,
which are smaller than those between �PM2.5 and �Tave, �Tmax and �Tmin, implying
that �PM2.5 is more closely related to the UHI intensity. Further analysis shows that the
above correlation between �PM2.5 and �T values is statistically significant (Table 2), with
the correlations between �PM2.5 and �Tave and between �PM2.5 and �Tmin significant at
the 0.01 level (for a total sample size of 365). Introducing lags of 1–3 days (i.e., �T of 1,
2 and 3 days after the �PM2.5 observation) gives correlations still generally significant at
the 0.01 level, although the degree of correlation is slightly lower. Considering the values
of these correlation coefficients, �PM2.5 and �Tmin (�Tmax) have the strongest (weakest)
correlation.

3.3 Granger Causality Test

3.3.1 Stationarity Analysis

Granger causality theory requires that a given variable be stationary for causality testing
because non-stationary signals may introduce a pseudo-regression into the Granger causality
test, which may lead to erroneous conclusions. Therefore, the stationarity of the time series
should be confirmed before the Granger causality test. If the variable is found to be non-
stationary, it may be either transformed differentially or logarithmically until the variable
becomes stationary. The stationarity of the sequences analyzed using the augmented Dick-
ey–Fuller test indicate unit-root values for �PM2.5, �Tave, �Tmax and �Tmin of −5.91,
−4.00, −8.97 and −5.03, respectively, which are all less than the 0.01 standard confidence
level (−3.45), implying the data are all stationary, and can be directly used in the Granger
causality test.
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3.3.2 The Granger Causality Test

Table 3 shows the results of the Granger causality test between �PM2.5 and �T values
(including �Tave, �Tmin and �Tmax) for a significance level α of 0.05 (i.e., the fiducial
probability is 95%). For k �1 (i.e., �T lags �PM2.5 by 1 day when considering �PM2.5

as the cause, and �PM2.5 lags �T by 1 day when considering �T as the cause), the results

Table 3 Granger causality test results; N is the sample size, F is the F-statistic of the Granger causality test,
and p is the confidence probability; k �1, 2 or 3 implies �T lags of 1, 2 or 3 days, respectively, of �PM2.5
when considering �PM2.5 as the cause, and �PM2.5 lags of 1, 2 or 3 days, respectively, of �T values when
considering �T as the cause

Lag Hypothesis N F p

k�1 �PM2.5 is not the Granger
cause of �Tave

364 3.91278 0.0487

�Tave is not the Granger
cause of �PM2.5

364 23.6529 2.E−06

�PM2.5 is not the Granger
cause of �Tmax

364 0.67996 0.4101

�Tmax is not the Granger
cause of �PM2.5

364 0.00993 0.9207

�PM2.5 is not the Granger
cause of �Tmin

364 14.9142 0.0001

�Tmin is not the Granger
cause of �PM2.5

364 6.34368 0.0122

k �2 �PM2.5 is not the Granger
cause of �Tave

363 12.0002 9.E−06

�Tave is not the Granger
cause of �PM2.5

363 2.04581 0.1308

�PM2.5 is not the Granger
cause of �T -max

363 0.99208 0.3718

�Tmax is not the Granger
cause of �PM2.5

363 0.15942 0.8527

�PM2.5 is not the Granger
cause of �Tmin

363 4.97259 0.0074

�Tmin is not the Granger
cause of �PM2.5

363 5.46383 0.0046

k=3 �PM2.5 is not the Granger
cause of �Tave

362 7.61373 6.E−05

�Tave is not the Granger
cause of �PM2.5

362 0.77860 0.5065

�PM2.5 is not the Granger
cause of �Tmax

362 2.51571 0.0581

�Tmax is not the Granger
cause of �PM2.5

362 0.44699 0.7196

�PM2.5 is not the Granger
cause of �Tmin

362 3.86337 0.0097

�Tmin is not the Granger
cause of �PM2.5

362 2.48372 0.0606

Bold lines represent the rejection of the null hypothesis
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reject the null hypothesis of �Tave/�Tmin with a probability of p <0.05, which leads to the
conclusion that there is a two-way causal relationship between �PM2.5 and �Tave/�Tmin

values. However, there is no Granger causality between �PM2.5 and �Tmax values, since
the corresponding p value is >0.05.

For k �2, there is a mutual Granger causality relationship between �PM2.5 and �Tmin

values, which means that�PM2.5 and�Tmin values can influence each other over the course
of two days. Furthermore, �PM2.5 is still the Granger cause of �Tave values, indicating that
the �PM2.5 concentration has a significant effect on the �Tave value of the following day,
but the opposite is not true. For �Tmax values, as mentioned previously, the results do not
show any Granger causality with the �PM2.5 concentration.

For k �3, the test results show that �PM2.5 is still a Granger cause of �Tmin and �Tave

values, while both �Tmin and �Tave values are no longer Granger causes of the �PM2.5

concentration, which cannot be inferred through the correlation coefficients in Table 2. In
contrast, �Tmax values and the �PM2.5 concentration are still not associated directly.

Overall, the results show that there is a possible causal relationship and positive feedback
between �PM2.5 and �Tmin values, since they exhibit mutual causation, and can affect each
other for lag periods within two days. Moreover, as the effect of �PM2.5 on �Tmin values
can last for approximately three days, the �PM2.5 concentration is probably the main cause
of the UHI phenomenon, and the UHI effect may further enhance the �PM2.5 level.

3.4 Case Analysis

Figure 6 shows a heavy-pollution event in November 2015 in Beijing. During the day on 26
November, the PM2.5 mass concentrations in the urban and rural areas were both very low.
Following the night of 26November, there was a rapid deterioration in air quality, and the rate
of increase in the urban PM2.5 mass concentration was significantly greater than that in the
rural area. On the afternoon of 27 November, the urban PM2.5 mass concentration exceeded
200 µg m−3, with a maximum close to 300 µg m−3, and the PM2.5 mass-concentration
difference between urban and rural areas was >150 µg m−3. The temperature observed
from the automatic weather station showed that, from 26–27 November, the diurnal cycle
for temperature became weak corresponding to an increase in the PM2.5 mass concentration,
especially in urban areas. TheUHI intensity becameweaker (stronger) during the day (night),
with �Tmax (�Tmin)�2.9 °C (4.4 °C) on the 26 November, and −1.1 °C (4.6 °C) on 27
November.

The increase in the concentration of fine particulate matter first caused the surface radia-
tion flux to change. Table 4 shows the four CERES-based radiation values at the surfaces of
the urban areas (near the Institute of Atmospheric Physics station) and the rural areas (near
the Miyun station) from the 26–27 November 2015, indicating the downwards shortwave
radiation reaching the surface decreased with an increase in the PM2.5 concentration. The
average downwards shortwave flux at the three stations on 26 November was 114 W m−2,
which decreased to 99 W m−2 on 27 November, with the decrease in downwards shortwave
flux greater in urban areas than that in rural areas. The average upwards shortwave flux also
decreased by approximately 4.5 W m−2. At night, the presence of pollutants increased the
longwave radiation reaching the surface and the atmosphere. From 26–27 November, the
downwards longwave flux increased from 228 to 261Wm−2, and was greater in urban areas
than in rural areas. At the same time, the average upwards longwave flux increased by approx-
imately 28 W m−2. The effect of particulate matter on longwave and shortwave radiation
was reduced from the urban to the rural areas, which is consistent with the distribution of
pollutants. The above results are consistent with those in previous works (e.g., Wang et al.
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Fig. 6 The hourly a PM2.5 concentration and b temperature observations from 26–28 November 2015

2016). While the variations in longwave radiation may be caused by water vapour, fog and
clouds, both fog and haze are often associated with high PM2.5 concentrations in Beijing.
In this case, the meteorological observations show that the total cloud cover in Beijing on
26 November 2015 was 20%. The concentration of pollutants increased significantly on 27
November, with a total cloud cover of 50%, so that observed increase in cloud cover was
likely caused by the increase in haze (Tan et al. 2017). From 26–27 November, the average
relative humidity in urban areas was 45% and 53%, respectively, with the increase in relative
humidity also consistent with the increase in PM2.5 concentration.
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Table 4 The CERES-based upwards shortwave flux, downwards shortwave flux, upwards longwave flux, and
downwards longwave flux at the surface on 26 and 27 November 2015 at the urban Institute of Atmospheric
Physics and rural Miyun stations and their differences between these two days

Station type Date Downwards
shortwave flux
(W m−2)

Upwards
shortwave flux
(W m−2)

Downwards
longwave flux
(W m−2)

Upwards
longwave flux
(W m−2)

Urban 26 November
2015

114.3 28.7 246.1 260.9

26 November
2015

98.6 24.6 286.3 286.3

Difference −15.7 −4.10 40.2 25.4

Rural 26 November
2015

113.6 25.9 210.5 248.9

26 November
2015

99.6 20.8 236.4 278.6

Difference −14.0 −5.1 25.9 29.7

To further explore the effect of fine particulate matter on the surface energy budget,
Fig. 7 shows the hourly variations in sensible and latent heat fluxes over urban (Institute of
Atmospheric Physics station) and rural areas (Miyun station) from26 to 28November in 2015,
indicating that, from 26 to 27 November, the downwards shortwave radiation reaching the
ground in urban and rural areas decreased with an increase in PM2.5 concentration (Table 4),
which resulted in a decrease in the sensible heat flux (Fig. 7) and an attenuation of thewarming
of the near-surface atmosphere. For rural areas, the decrease in the sensible heat flux was not
as obvious as that in urban areas due to the relatively small PM2.5 mass concentration, and
the warming of the near-surface atmosphere during the daytime was more rapid than that in
urban areas, which led to a decrease in �Tmax values (Fig. 6b). At night, the presence of
fine particles can reduce the surface longwave flux and the latent heat flux, thus acting as an
insulator. Because the PM2.5 mass concentration in urban areas was larger than that in rural
areas during this period, the insulation effect was large in urban areas, so that the temperature
at night in the urban areas reduced more slowly than that in rural areas, with the value of
�Tmin maintained at a relatively high value.

4 Discussion

Previous studies have shown that average temporal variations in surface PM2.5 concentrations
in large- andmedium-sized cities usually display bimodal or semi-diurnal characteristics (Xu
et al. 2014; Zhao et al. 2014; Hu et al. 2014; Lv et al. 2016), with the two peaks corresponding
to the morning and evening traffic peaks, while the concentrations in between these periods
are lower. However, previous studies have also shown that, in different places or periods,
various emission sources and meteorological conditions play important roles in shaping the
temporal variation of PM2.5 concentration (Li et al. 2015;Miao et al. 2017). For example, in a
coastal city (e.g., Tianjin, China), the first peak can be delayed until noon, and the second peak
can be postponed until midnight (Yao et al. 2010). However, the occurrences of maximum
(1100 and 2300 LT) andminimum (0600–0700 and 1600 LT) PM2.5 concentrations in Beijing
are different in our results.
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Fig. 7 The hourly sensible and latent heat fluxes from 26–28 November 2015 for a the urban Institute of
Atmospheric Physics station, and b the rural Miyun station

The formation, maintenance and dissipation of pollutants are closely related to the mete-
orological conditions (Cai et al. 2017; Li et al. 2017; Miao et al. 2015a, 2017). For example,
a high temperature or atmospheric inversion can exacerbate photochemical reactions, which
favour the accumulation and secondary generation of PM2.5. Meteorological conditions, such
as static or small vertical transport, regional transport and unfavourable large-scale weather
circulations (e.g., a uniform pressure field or high pressure at the surface) are not conducive to
the dissipation of pollutants (Cai et al. 2017; Miao et al. 2017). The cross-regional transport
of pollutants can even lead to an increase in the concentration of local particulate matter. At
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the urban scale, due to the complexity of boundary-layer structure and the local circulation
in urban areas (i.e., due to the UHI–pollution interaction), there is a complex relationship
between the UHI effect and fine-particle pollution. The increase in surface fine-particle con-
centrations generally fosters the formation of an inversion layer at night during autumn and
winter (Miao et al. 2015a, d), resulting in stable atmospheric conditions, with the turbulent
kinetic energy weakening with consistently steady weather (Fig. 8), which inhibits vertical
diffusion and leads to the further accumulation of contaminants locally. From 26–27 Novem-
ber 2015, a strong inversion layer existed between the surface and 47-m height for most
hours, and a strong inversion layer existed between the surface and 140-m height at night
(see Fig. 8), which greatly weakened turbulence and the diffusion of pollutants. The effect
of the UHI may also affect the distribution of fine particulate matter through UHI-induced
circulations. Figure 6a shows that the PM2.5 mass concentration during the night (from 2100
LT 26 November to 0100 LT 27 November, and from 2000 LT 27 November to 0600 LT 28
November) decreased in rural areas, but increased in urban areas, with similar variations also
seen in Fig. 3b. This higher concentration of fine particles in urban areas is mainly related
to the emission of pollutants and the reduced depth of the boundary layer, although there
may still be a weak UHI circulation. Figure 9 shows the diurnal variations in the local wind
field in Beijing for wind speeds averaged over the last eight years. The removal of the large-
scale circulation background (Zheng et al. 2018) can effectively highlight local circulation
characteristics in Beijing, which mainly show UHI circulations and mountain–valley flow
circulations. By comparing Fig. 3b with Fig. 9, a good relationship can be seen between
the diurnal variation in PM2.5 concentrations in Beijing urban areas and the local flow field,
suggesting that, from the afternoon to the middle of the night, southerly local flow tends to
transport foreign pollutants into the urban areas of Beijing. The obstruction of the western
and northern mountains further contributes to the accumulation of pollutants, increasing the
concentration of pollutants starting in the afternoon. Therefore, it is possible that, especially
for the night, the weak near-ground convergence of local UHI circulation combined with the
mountain-valley breeze transports fine particles from rural areas back towards urban areas
(Liu et al. 2009), which leads to the accumulation of pollutants in urban areas. This indicates
a positive feedback due to the interaction between air pollutants and the UHI effect.

It should be noted that there are uncertainties regarding the impact of particulate matter on
theUHI effect due to uncertainties in geographical factors and researchmethods. For example,
in different cities, the pollution source or its geographical characteristics may differ, leading
to drastically different particle sizes (Zhao et al. 2013). Previous studies have indicated that
particles with different sizes have different effects on longwave and shortwave radiation (e.g.,
Cao et al. 2016). A detailed analysis is planned using a high-resolution numerical model and
observations.

5 Summary

The characteristics of surface PM2.5 mass concentrations in the Beijing area and the rela-
tionship with the UHI effect were analyzed by using observational data from 2012 to 2016.
The main conclusions are as follows:

1. The 5-year-average surface concentrations of PM2.5 in the Beijing urban and rural areas
are 63 and 41 µg m−3, respectively, and the annual averages in these two areas have both
decreased. In urban areas, the surface PM2.5 concentrations have significant interannual
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Fig. 8 Hourly a air temperature and b turbulent kinetic energy (E) from 26–28 November 2015, which is the
local time

and seasonal variations and a semi-diurnal cycle. In rural areas, the interannual variation
is not evident, with the diurnal cycle featuring a single peak concentration.

2. There is a strong correlation between �PM2.5 (urban–rural PM2.5 concentration) and
UHI intensity �T . Specifically, the correlation between �PM2.5 and �Tmin values is
the highest, followed by the correlation between �PM2.5 and �Tave values, with the
correlation between �PM2.5 and �Tmax values the lowest. From a seasonal perspective,
the correlation between �PM2.5 and �T values in winter is the strongest.

3. Granger’s causality analysis shows that the relationship between�PM2.5 and�Tmin val-
ues is the strongest;�Tmin may affect�PM2.5 over the course of two days, while�PM2.5
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Fig. 9 Diurnal variations of the local wind-speed anomaly based on eight years of observations in Beijing; U
indicates the east–west velocity component (positive value: eastwards), V indicates the north–south velocity
component (positive value: northwards)

may affect �Tmin over the course of three days. The relationship between �PM2.5 and
�Tave is moderate, and these two variables have a mutual causal relationship after one
day. Granger’s causality test shows that there is no causal relationship between �PM2.5

and �Tmax values.
4. The case analysis shows that, with an increase in surface PM2.5 concentration, the down-

wards shortwave radiation at the surface decreases during the daytime, which mitigates
the warming of the atmosphere. At night, fine particles reduce the loss of longwave radi-
ation from the surface, maintaining urban areas warmer than rural areas, leading to an
increased value of �Tmin, which indicates that the longwave radiation from the surface
is weaker on polluted days than on relatively clean days.
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