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Abstract: Land surface temperature (LST) is an important parameter in the study of the physical
processes of land surface. Understanding the surface temperature lapse rate (TLR) can help to
reveal the characteristics of mountainous climates and regional climate change. A methodology was
developed to calculate and analyze land-surface TLR in China based on grid datasets of MODIS
LST and digital elevation model (DEM), with a formula derived on the basis of the analysis of
the temperature field and the height field, an image enhancement technique used to calculate
gradient, and the fuzzy c-means (FCM) clustering applied to identify the seasonal pattern of the
TLR. The results of the analysis through the methodology showed that surface temperature vertical
gradient inversion widely occurred in Northeast, Northwest, and North China in winter, especially
in the Xinjiang Autonomous Region, the northern and the western parts of the Greater Khingan
Mountains, the Lesser Khingan Mountains, and the northern area of Northwest and North China.
Summer generally witnessed the steepest TLR among the four seasons. The eastern Tibetan Plateau
showed a distinctive seasonal pattern, where the steepest TLR happened in winter and spring, with a
shallower TLR in summer. Large seasonal variations of TLR could be seen in Northeast China, where
there was a steep TLR in spring and summer and a strong surface temperature vertical gradient
inversion in winter. The smallest seasonal variation of TLR happened in Central and Southwest
China, especially in the Ta-pa Mountains and the Qinling Mountains. The TLR at very high altitudes
(>5 km) was usually steeper than at low altitudes, in all months of the year.

Keywords: temperature lapse rate; MODIS; seasonal pattern; Sobel; FCM

1. Introduction

Temperature lapse rate (TLR) is the rate at which temperature decreases with altitude. Generally,
there are two kinds of TLRs, dynamic and static TLR. The former describes the temperature change of
the air parcel when it rises (e.g., dry adiabatic lapse rate); the latter indicates the temperature changes
with space, which may be vertical (e.g., tropospheric free-air TLR) or along the earth’s surface with
different altitudes. The focus of this article is the TLR along the earth’s surface, or lapse rate of land
surface temperatures (LST).

LST is an important parameter in the study of the physical processes of land surface, which is
frequently used in the fields of hydrological and meteorological models [1,2], agricultural and
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ecological monitoring [3–5], and urban heat island analyses [6–8]. Remote sensing technology
provides a spatial continually-distributed LST, which is of benefit to the analysis of spatial variation
when compared to the limited ground meteorological stations [9]. The lapse rate of LST reflects the
spatiotemporal variation of the thermal processes of land surface and the difference of regional climate,
which can be used for the study of mountainous climates and probably for regional climate change,
especially in remote mountainous areas where observations from ground meteorological stations are
lacking. For example, different land-surface TLR at different sides of a mountain may be related
to the vertical zoning of vegetation, and a steep TLR may cause a rapid vegetational change in the
vertical [10,11]. In addition, elevation-dependent warming in mountainous areas may result in a
temporal change in the TLR, and the more rapid warming at high altitude may be related to the
shallower land surface and near-surface air TLR [12].

Some studies have found that there is a strong relationship between the mean LST and mean
near-surface air temperature [13–16], and the seasonal pattern of monthly mean land-surface TLR is
very similar to that of the near-surface air TLR [17]. However, as the LST is influenced by the surface
regime [18,19], the relationship between them is not always stable. However, many previous studies
have focused on the near-surface air TLR, and studies of the land-surface TLR are rare. Therefore,
it is necessary to examine the land-surface TLR as a complement in the study of climatology and
climate change. To avoid confusion, a negative TLR has usually been designated when the temperature
decreases with the increase of elevation, and a positive TLR has been regarded as the temperature
vertical gradient inversion in a substantial body of literature [11,20–24].

Atmospheric temperature decreases with the increase of elevation in the troposphere, and the
global average annual mean atmospheric TLR is about −6.5 ◦C/km [25], which is generally used as a
reference for near-surface air TLR. However, varied values of annual mean near-surface air TLRs have
been reported for different areas [21,22,26,27]. Pepin and Losleben [28] found that TLR was steeper at
higher elevations, and Mokhov and Akperov [29] pointed out that TLR became shallower from a low
latitude to the polar regions. In addition, the atmospheric temperature sometimes remains constant or
even increases with elevation [30]. A temperature inversion is frequently found in winter [23,31,32].
The annual cycle of the TLR shows different seasonal patterns, with some steeper in summer and
shallower in winter [21,23,33,34], some steeper in winter and shallower in summer [11], and others
that are steeper in spring and shallower in later summer or autumn [35,36].

Linear regression is widely used to calculate the TLR of a small region based on observational data
of meteorological stations [24,37]. For a large region, stations are usually divided into several groups
and the TLR in each group is calculated separately [22,34,38], or aggregated through a moving spatial
window, thus each station has a local TLR [39,40]. Regarding the grid data, linear regression [41,42]
and moving window regression [20] have also been adopted, based on grid values. However, as the
TLR calculated through linear regression depends strongly on the stations being considered, and the
station distribution is usually denser at low altitude than at high altitude, the results obtained may
represent the TLR of a low altitude than of the whole mountainous area. It is also notable that as the
grouping methods are different, the stations being considered in a group are different, which may
reduce the comparability of the research results. Due to the heterogeneous spatial distribution of
stations, a moving window regression cannot avoid the statistical errors caused by different sampling
size or scales [43]. Though a linear regression, based on the grid data, eliminates the influence of
heterogeneity, low correlation coefficients may be obtained, especially for the case of winter with
enhanced temperature-inversion effects [21]. As for the identification of the seasonal pattern of a TLR,
a line chart can tell the seasonal variation in a mountainous area or large scope, but cannot describe
the details of a small scope with the effect of microclimate.

In this paper, we developed a methodology to calculate and analyze the TLR based on grid data,
and used China as a case study for the application of the methodology by using grid datasets of
moderate-resolution imaging spectroradiometer (MODIS) LST and digital elevation model (DEM).
To be specific, we derived a formula on the basis of the analysis of the relationship of the temperature
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field and the height field, applied the image enhancement technique to calculate the gradient,
and used the fuzzy c-means (FCM) clustering method to identify the seasonal pattern of the TLR.
The analysis results were broadly in accordance with previous studies based on meteorological stations,
which would form a reference to the study and application of both land-surface TLR and near-surface
air TLR, in a large region with complex topography.

2. A Conceptual Framework

For a continuous, spatially-distributed height field and temperature field, the gradient of the
height points to the direction that the variables increase at the greatest rate [44–46], i.e., the steepest
terrain slope. However, the direction may not be the same as the direction in which the temperature
decreases at the greatest rate (the gradient of temperature). Generally, there is an angle between them;
an angle greater than π/2 indicates that temperature decreases with the increase in height, and less
than π/2 indicating that temperature increases with the increase in height, i.e., the temperature vertical
gradient inversion, and an angle equal to π/2 indicates an unchanged temperature, with the increase
in height. In a small region (compared with the average area covered by one meteorological station),
the rate of change of height or temperature along a given direction can be considered to be constant,
approximately, due to the continuously-varied terrain and the same atmospheric factors affecting the
climate. Hence, the increase in temperature along the direction of the steepest topographical slope is
the directional derivative of temperature, along the direction of the gradient of height at a site, i.e.,
the increase of temperature within a small region is the length of the gradient of temperature in the
direction of the gradient of height.

For example, the angle between the gradient of height and the gradient of temperature, θ > π/2,
shows a negative correlation between height and temperature (Figure 1). Within a given small scope
of a distance between PA and PB (denoted as dPAPB ), the TLR is the difference of temperature, divided
by the difference of height, i.e., TLR = t1−t5

h4−h1
. The length of the gradient of height at this scope is

h4 − h1, and the length of the gradient of temperature is t6 − t1. In a homogeneous field, the difference

of temperature between PA and PE, t5 − t1, is equal to
dPAPE
dPAPD

·(t6 − t1), where dPAPE= dPAPB · cos(π− θ).

As dPAPB is equal to dPAPD , the TLR can be written as (t 6−t1)· cos θ
h4−h1

, which is the length of the gradient of
temperature divided by the length of the gradient of height, in the direction of the gradient of height.
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In digital image processing, height field and temperature field are both discrete, and the gradient 
can be obtained through image enhancement techniques [47]. Three of the most common operators, 
Roberts, Prewitt, and Sobel, are used in edge-detection (a kind of image enhancement), and the 

Figure 1. Contour of homogeneous height field (dashed line) and temperature field (solid line). Contour
lines of the height field and the temperature field are given as h and t, respectively (h1 < h2 < h3 < h4,
t1 < t2 < t3 < t4 < t5 < t6). The northward and southeastward arrow show the direction of the gradient
of height and temperature, respectively. PA, PB, · · · , PE represent the geographical positions on a
two-dimensional map. The arc between PB and PD is part of a circle centered on PA.
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In digital image processing, height field and temperature field are both discrete, and the gradient
can be obtained through image enhancement techniques [47]. Three of the most common operators,
Roberts, Prewitt, and Sobel, are used in edge-detection (a kind of image enhancement), and the Prewitt
and Sobel operators are generally preferred to the Roberts [48]. As the Sobel operators implement
differentiation in one direction and Gaussian averaging in the other, it makes for a smoother gradient
and reduces the influence of noise.

Theoretically, temperature changes in a given cycle period. Hence, the TLR, which is decided by
the gradient of temperature, also changes in the same cycle period as temperature. Hence, how the
TLR changes with the seasons can be translated into two issues: (1) when the steepest (or shallowest)
TLR occurs, i.e., where the wave trough (or crest) is, and (2) how much the magnitude of variability is
within a year. To identify the variability model of TLR, four kinds of seasonal pattern were assumed,
which were the steepest in spring, summer, autumn, and winter, respectively. However, the actual
variability of TLR is usually characterized by more than one pattern. In order to identify which
pattern it most likely belonged to and how much of it belonged to the pattern, the FCM clustering
algorithm [49] was used. Furthermore, four standard samples generated artificially were added
as a reference, which represented the typical seasonal patterns (the steepest in April, July, October,
and January) in each season.

3. Materials and Methods

3.1. Data

The LST datasets were provided by the International Scientific & Technical Data Mirror Site,
Computer Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn).
The monthly mean LST was the average of the daily mean LST (average of diurnal and nocturnal LST)
in each month, which was retrieved from MODIS data obtained by the satellite Terra and Aqua [9].
To avoid confusion, the mean LST above-mentioned is expressed as “LST” below. As there were a few
missing values on the images, linear interpolation was used to fill the blank patches. These MODIS
images were based on the geographic coordinate system of WGS-1984, at a spatial resolution of 0.0059◦

× 0.0059◦. The range of the study area covered the whole of China, located from 4◦00′N to 53◦31′N
latitude and from 73◦40′E to 135◦05′E longitude (Figure 2). The observed time ranged from January
2001 to December 2015. Monthly average LST was the average of the monthly LSTs of each month,
from 2001 to 2015. Annual average LST was the average of the monthly average LST.

The dataset of DEM (GMTED2010) was provided by Natural Earth (https://www.
naturalearthdata.com). The elevation data came from the DEM images, which were based on the
geographic coordinate system of WGS-1984, at a spatial resolution of 30′ × 30′.

As the calculation of the TLR was based on both MODIS LST and DEM, they must have the same
resolution. Hence, it was necessary to carry out resampling. When original images with a relatively
high resolution were applied to a large-scale region, noise would seriously interfere with the accuracy
of the judgment of the results, which might drown out the main information. In order to keep a balance
between the denoising and maintaining the feature of the microclimate, resampling to a new spatial
resolution of 10 km × 10 km (after projection) was undertaken in this case study.

http://www.gscloud.cn
https://www.naturalearthdata.com
https://www.naturalearthdata.com
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Figure 2. Topography of the study area (China) and seven geographical divisions.

3.2. Calculation of TLR

As LST is a function of space at a given time, its distribution throughout space is a scalar field
(i.e., temperature field T), and so is elevation (i.e., height field H). The gradient of H at a site, denoted
as ∇H, is a vector pointing in the direction of the steepest slope at that site. Along this direction,
the increase of temperature per unit of height is supposed to be the TLR. Hence, the TLR can be
expressed as follows:

Γ =
|∇T|· cos〈∇H,∇T 〉

|∇H| , (1)

where ∇T is the gradient of T and 〈∇H,∇T〉 is the angle between ∇H and ∇T. When the numerator
and the denominator are both multiplied by |∇H|, Equation (1) can be written as follows:

Γ =
∇T·∇H

|∇H|2
, (2)

As MODIS images are based on the geographic coordinate system of WGS-1984, the distribution
throughout space was on the surface of an ellipsoid, so the gradient could not be directly calculated
through a computer. Equidistant cylindrical projection [50] was used to transform the surface of an
ellipsoid into a plane, which simplified the complexity of calculation. Through this transformation,
the pixels of the new image, denoted as T0, had the same distance along the longitudinal and latitudinal
direction (10 km × 10 km). An extensional Sobel operator [51,52] of two 5 × 5 kernels,

O1 =


1 2 0 −2 −1
4 8 0 −8 −4
6 12 0 −12 −6
4 8 0 −8 −4
1 2 0 −2 −1

, O2 =


−1 −4 −6 −4 −1
−2 −8 −12 −8 −2
0 0 0 0 0
2 8 12 8 2
1 4 6 4 1

,

were convolved with the image to calculate the gradient,

|∇T| =
√

T2
x+T2

y, (3)
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α = a tan(
Ty

Tx
), (4)

where |∇T| and α are the length and the direction of ∇T, respectively. Tx and Ty are the derivatives
for x changes (longitudinal direction) and for y changes (latitudinal direction), which are calculated by

Tx= T0 ⊗O1/960, (5)

Ty= T0 ⊗O2/960, (6)

where ⊗ denotes the two-dimensional signal processing convolution operation. The outside weights
([1,1,4,4,6] or [−1,−4,−6,−4,−1]) of each kernel are based on Pascal’s triangle, the coefficients of which
are subject to a Gaussian distribution, and the inside ones ([2,2,8,8,12] or [−2,−8,−12,−8,−2]) are
twice as much as them. As the center parts are given greater weights than the edge parts, the spatial
relationship is a kind of impedance or a distance decay. The farther away a pixel is from the center,
the smaller the impact it has on the TLR of the center pixel. Note that 960 is the product of the sum of

the absolute of each element of a kernel (
5
∑

i=1

5
∑

j=1

∣∣oi,j
∣∣) and the size of each pixel (10 km), and the unit of

gradient is ◦C/km. ∇H, Hx, and Hy are calculated the same as ∇T, Tx, and Ty.

3.3. Analysis of Seasonal TLR Variation

First, the standard score normalization, then unity-based normalization were carried out, based
on the TLR. Four artificially generated standard samples, which shared the same cycle period (12
months) and held different phases ({0,π,±π

2 } indicating that the wave trough occurred in April,
July, October, and January, respectively), were added to make the clustering. FCM was based on the
minimization of the following objective function:

JM =
n

∑
i=1

c

∑
j=1

uM
ij ‖ri−cj‖2, (7)

where M is the fuzzifier (= 1.01 here); n is the number of samples (including all non-void image pixels
and four standard samples); c is the number of clusters (= 4 here); ri is the normalized TLR at the ith

sample (which is a vector of 12 elements); cj is the center of the jth cluster; and uij is the degree of
membership of ri in the jth cluster. Note that ‖ri−cj‖ is the norm expressing the similarity between ri
and cj. Fuzzy partitioning is carried out through an iterative optimization of Equation (7), with the
update of uij and cj, which are expressed as follows:

uij =
1

∑c
k=1

( ‖ri−cj‖
‖ri−ck‖

) 2
M−1

, (8)

cj =
∑n

i=1 uM
ij ri

∑n
i=1 uM

ij
, (9)

The sample i would be classified into the cluster with the largest uij. The image pixels that shared the
same cluster as any one standard sample, would hold a similar seasonal pattern to it. The magnitude
of variability was measured by the range of the TLR, within a year.

4. Results of Case Analysis

4.1. Spatial Variation of TLR

There were some areas with extremely small or large values of TLR (Γ ≤ −15 or Γ > 10 ◦C/km),
which were mainly located in the North China Plain, Northeast China Plain, and Tarim Basin (Figure 3).
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When leaving these areas out of consideration, the annual average TLR of Γ ≤ 0 ◦C/km accounted for
86.3%, indicating that the LST decreased with the increase of altitude, in most parts of China. The steep
annual average TLR (−15 < Γ ≤ −7 ◦C/km) mainly took place in the Tibetan Plateau. Temperature
vertical gradient inversion (0 < Γ ≤ 10 ◦C/km) could be seen in some regions of Northeast, Northwest,
and North China.
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Figure 3. Spatial distribution of the annual average TLR during 2001–2015. The spatial resolution is
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A big difference was found in the seasonal distribution (Figures 4 and 5). The steep
monthly average TLR mainly occurred in the Southwest (the percentage of image pixels with
−15 < Γ ≤ −7 ◦C/km was greater than 20%, in all four seasons), Northwest (spring, summer,
and early autumn), Northeast, and North China (summer and later spring) (Figure 5). The TLR of the
mountainous and the hilly areas in Central, South, and East China became steeper (the percentage of
image pixels with −15 < Γ ≤ −7 ◦C/km increased) in summer, and at the same time, the TLR of the
Eastern Tibetan Plateau became shallower. The TLR of Eastern Tibetan Plateau became the steepest in
later autumn and winter, but that of the western part of the plateau began to become shallow (Figure 4).
The region-wide monthly average TLR of the Eastern Tibetan Plateau was shallower than the western
part by about 1.6 ◦C/km, from June to September (Figure 6a,c). In winter, the temperature vertical
gradient inversion was widely distributed in Northeast, Northwest, and North China (the percentage
of image pixels with 0 < Γ ≤ 10 ◦C/km was greater than 20%) (Figure 5). It is notable that there was
a temperature vertical gradient inversion in the western and northern parts of the Greater Khingan
Mountains in Northeast China, in winter and in early spring, but a steep TLR occurred in some parts
of the eastern slope of the mountains (Figure 4). The region-wide monthly average TLR of the Western
and Northern Greater Khingan Mountains could be greater than 0 ◦C/km, in December and January,
but those of the eastern slope of the mountains were much less than 0 ◦C/km, in the two months
(Figure 6b,d).
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Figure 6. The region-wide monthly average TLR of the Tibetan Plateau (a and c) and the Greater
Khingan Mountains (b and d). The white circles in the patches (a) and (b) represent the ground
meteorological stations. The dividing line in patch (a) indicates east and west of the plateau with much
more stations in the east, and patch (b) indicates the mountain ridgeline. The TLR in patches (c) and
(d) are the average of the TLR values of image pixels with −15 < Γ ≤ 10 ◦C/km in every month.

4.2. Temporal Variation of TLR

TLR is changeable in the areas of plains and basins with extremely small values of |∇H|
(Figures 3 and 4). However, the percentage of these areas (Γ ≤ −15 or Γ > 10 ◦C/km) in each month
was relatively stable (accounting for about 10%, respectively) (Figure 7). Based on this, this research
focused on the other twenty-five levels of −15 < Γ ≤ 10 ◦C/km.

The country-wide monthly average TLR was steeper in summer than in winter (Figure 7).
The spatial variability was larger in winter than in summer (standard deviation was 5.0 ◦C/km
in winter and 4.5 ◦C/km in summer, data not shown). The percentage of predominant levels of
Γ ≤ 0 ◦C/km was larger in summer than in winter. Meanwhile, there was an increased percentage of
temperature vertical gradient inversion in winter, when compared to that in summer.

The monthly average TLR was roughly steeper at a higher altitude than at a lower one (Figure 8a),
and was also generally steeper in summer than in winter, at a given elevation. Temperature vertical
gradient inversion mostly happened at low altitudes, in winter. Though the monthly average TLR
showed complex changes with an increase in LST, shallow TLR or temperature vertical gradient
inversion also happened in winter (Figure 8b). Furthermore, strong temperature vertical gradient
inversion could be found in winter, especially in December and January, at low elevations less than
0.2 km above sea level.
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Figure 7. Variation of monthly accumulated percentage at each level of the TLR and the country-wide
monthly average TLR. The primary Y-axis represents the accumulated percentage of image pixels at
each level; the secondary Y-axis represents the country-averaged monthly average TLR. The dashed
line is the dividing line between levels of Γ ≤ 0 and Γ > 0 ◦C/km. The solid line is the mean of the
monthly average TLR of the image pixels, where −15 < Γ ≤ 10 ◦C/km.
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Figure 8. Profile of the monthly average TLR with elevation (a) and LST (b). The color bar shows
twenty-five levels of TLR with −15 < Γ ≤ 10 ◦C/km. The spacing of elevation was 50 m (a) and that
of LST was 1 ◦C (b). The value of a grid was the mean of the TLR of the image pixels where the TLRs
ranged within the grid bound. If the number of above-mentioned image pixels was less than two,
the value was assigned as null

4.3. The Relationship of TLR with Elevation and LST

As a whole, the annual average LST decreased with the increase in elevation (Figure 9a).
Steep annual average TLR (Γ ≤ −7 ◦C/km) occurred frequently at elevations of h > 1.5 km, especially
at h > 4 km. In contrast, temperature vertical gradient inversion occurred frequently at h < 1.5 km.
The annual average TLR also showed less variability (average standard deviation σ = 2.8 ± 0.1 ◦C/km
at 95% significant level) at 1.5 < h < 4 km than those at other elevations (σ = 3.7 ± 0.1 ◦C/km)
(Figure 9b).

The monthly average LST also showed a remarkable decreasing trend with elevation in warm
months (summer, later spring, and early autumn) (Figure 10). However, as the LST at low altitude
could reach the same low as at high altitude in cold months (winter, early spring, and later autumn),
the relationship between elevation and LST was complex, especially at h < 2 km. The TLR at h > 5 km
was steeper than that at low altitude, in all months. Temperature vertical gradient inversion mostly
happened in winter, in cases of low LST and low altitude (h < 2 km), and also in some grids at middle
altitude (2 < h < 4 km). The former was represented by Northeast China, and the latter shown by
Northwest China. Interestingly, the monthly average TLR was often steeper at higher LST than at low
LST, at 2 < h < 6 km, in summer.
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Figure 9. The relationship of the mean (a) and standard deviation (b) of the annual average TLR with
elevation and the annual average LST. The spacing of elevation was 50 m and that of LST was 1 ◦C.
The value of a grid in patch a (b) was the mean (standard deviation) of the TLRs of the image pixels,
where TLRs ranged within the grid bound. If the number of above-mentioned image pixels was less
than two, the value was assigned as null. The slope of the solid line in patch (a) represents a reference
TLR of −6.5 ◦C/km. The color bar in patch (a) is the same as that in Figure 8.
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4.4. Seasonal Pattern and Magnitude of Variability

The summer pattern, or the patches with the steepest TLR in summer, was widely distributed
across most of China; the spring pattern and winter pattern mainly happened in the eastern parts of
the Tibetan Plateau, and the autumn pattern mainly took place in the North China Plain (Figure 11a).
As the areas with extremely large magnitudes of variability are well matched with the areas of plains
and basins with a small terrain slope and a low confidence of the calculating results, focus was given to
the rest of the areas. What was different from the previous analyses [22,38,40] was that not all parts of
the Tibetan Plateau showed a distinct seasonal pattern, but the eastern region of the plateau did exhibit
a winter and spring pattern. Moreover, the winter pattern was mainly distributed in the northern
slopes of the Eastern Himalayan Mountains. The smallest magnitude of variability occurred in Central
and Southwest China, especially in the Ta-pa Mountains and the Qinling Mountains, and the large
magnitude of variability was mostly distributed in the hills and mountainous areas of Northeast China
(Figure 11b), where the magnitude of variability could reach more than 15 ◦C/km.
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Figure 11. Seasonal pattern (a) and magnitude of variability (b) of the TLR. The type of seasonal pattern
in patch (a) indicates in which season the steepest TLR took place. The magnitude of variability in
patch (b) represents how much the TLR changed within a year. The grey color indicates the patches
where the confidence of the calculating results was low due to the flat topography.

5. Discussion

LST is an important parameter in the study of the physical processes of land surface.
The land-surface TLR could reflect the spatiotemporal variation of thermal processes and the difference
of the regional climate. The traditional ways to calculate surface TLR and identify the seasonal pattern
are linear regression and line charts, respectively. However, strong spatial heterogeneity led to a large
uncertainty, in the TLR estimated through linear regression, for a large region. Generally, stations or
grids were divided into several groups and the TLR in each group was calculated separately when the
study area was large. Although grouping could improve the accuracy to a certain extent, the grouping
results would directly affect the value of the TLR, and sparse meteorological stations in high altitude
would result in statistical bias. Meanwhile, as the station grouping was uncertain, different seasonal
patterns among small regions could not be distinguished clearly.

Therefore, a methodology was developed in this paper that was composed of a formula which was
derived on the basis of the analysis of the temperature field and the height field, an image enhancement
technique which was used to calculate the gradient, and FCM clustering which was applied to identify
the seasonal pattern of the TLR. Furthermore, the spatiotemporal variation of land-surface TLR in
China was analyzed by applying this methodology. The analysis results were broadly in accordance
with previous studies. The spatial variability in winter was larger than in summer, which has also
been found in previous studies [24,53]. Previous analysis results also showed that the summer pattern
is a dominant mode [21,27,33,35,54], which was consistent with the result of this work.
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Nevertheless, some previous studies have found that the Tibetan Plateau had a different seasonal
pattern when compared to other regions in the world, with the TLR steeper in winter than in
summer [22,38,40]. Unlike the previous analyses, however, not all parts of the Tibetan Plateau showed
such a distinct seasonal pattern, and this only occurred in the eastern region of the plateau (Figure 11a).
Moreover, the TLR of the Eastern Tibetan Plateau was steep, not only in winter, but also in spring,
and the winter pattern was mainly distributed in the northern slopes of the Eastern Himalayan
Mountains. A major reason for the difference of this analysis from previous ones could be related to
the uneven distribution of meteorological stations in the plateau. There are few meteorological stations
in the Western Tibetan Plateau (Figure 6a), and the seasonal pattern of TLR, which has been based on
linear regressions and meteorological observational data, in previous studies, actually represented
only the eastern region. As seasonal pattern could usually be identified by checking the trend of the
line chart, which strongly depended on the results of the station grouping, detailed seasonal features
based on the small scope have not been researched in the Eastern Tibetan Plateau. Kattel et al. [11]
found that the TLR in the northern slopes of the eastern Himalayan Mountains was steep in winter
and shallow in summer, which was consistent with our results.

The distinctive seasonal pattern of the TLR in the Eastern Tibetan Plateau was due to the unique
climatic regimes, dry and cold in winter, and moist and warm in summer [22]. On one hand, the intense
latent heat released at the upper atmosphere (water vapor condensation from moist convection of
southwest currents from the Bay of Bengal) and decreasing sensible heat at the surface (heavier rainfall
and denser cloudiness) produced the shallowest TLRs in summer in this region; on the other hand,
strong sunshine and the resulting sensible heat at the surface in the non-monsoon seasons (November
to April) produced the steepest TLR, in winter or spring [37].

As for the Xinjiang Autonomous Region located in Northwest China, temperature vertical gradient
inversion has also been observed, in winter, in previous studies [34,38,53]. In Northeast China, however,
the results of our analysis were different from some of the previous studies [38,40], which did not
observe the phenomenon of temperature vertical gradient inversion, but found a steep TLR in winter.
In order to reproduce their results as much as possible, the dataset from the National Meteorological
Information Center, China Meteorological Administration (CMA), was used to conduct the linear
regression. As shown in Figure 12, a steep monthly average TLR (−9.3 ◦C/km) was indeed found in
the northeastern parts of China (mostly in the northern part of Northeast China). However, though the
linear regression was significant, the goodness of fit was low (R2 = 0.312). More than 70% of these
stations were located in low altitude (<400 m), which accounted for less than 50% of the explained
sum of squares (ESS), and most residuals through linear regression came from those in high altitude.
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Figure 12. Scatter of elevation and near-surface air temperature in the northeastern parts of China in
January, during 1981–2010. Elevation and near-surface air temperature are denoted by h and t in the
equation of linear regression, respectively. A total of forty-nine meteorological stations were selected
by using the same division standard as Li et al. [38], and the stations were located in the north at 45◦N
and in the east at 115◦E.

The meteorological stations were mostly distributed in and around the Northeast Plain with low
altitude (not shown), but there were a few in the Greater Khingan Mountains and Lesser Khingan
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Mountains, at higher altitudes. As there were only a few stations in the mountainous and the hilly areas,
the temperature vertical gradient inversion could not be seen clearly. The magnitude of variability of
the TLR could reach more than 15 ◦C/km, in Northeast China (Figure 11b), which revealed a greatly
different TLR, within a year. There was a temperature vertical gradient inversion in the Lesser Khingan
Mountains and in the western and northern parts of the Greater Khingan Mountains, in winter and
early spring, but a steep TLR in some places of the Eastern Greater Khingan Mountains was also
notable (Figure 4). The temperature vertical gradient inversion, in the Greater Khingan Mountains and
Lesser Khingan Mountains, has also been reported in some other previous studies [55,56].

The widely distributed temperature vertical gradient inversion in the Northeast, Northwest,
and North China, in winter, may be related to the complex topography, including the cold air lake
effect, in the cold months, in the basins and lowlands of the northern parts of China [57,58]. It is also
interesting to note that the temperature vertical gradient inversion was distributed in the western
and northern parts of the Greater Khingan Mountains, in winter and in early spring, while a steep
TLR has been found in the eastern parts of the mountains. The former may be related to a persistent
snow cover, while the latter might have been caused by the unique Foehn effect, during these seasons.
On one hand, persistent snow cover and the inherent geomorphology might have been the main
factors for the formation of temperature vertical gradient inversion. The winter snow cover in the
mountains and plateau caused strong cooling near the surface and an obvious temperature vertical
gradient inversion; the plateau west of the Greater Khingan Mountains acted as a quasi-basin where
cold air masses from the northwest were more easily kept, at the surface, benefiting the formation
and development of the temperature vertical gradient inversion. On the other hand, as the Greater
Khingan Mountains are located west of the Northeast Plain, when the northwest wind passed by in
winter, the relatively warm air currents above the cool air masses in the Western and Northern Greater
Khingan Mountains descended along the leeward slopes, which led to a steep TLR in the eastern parts
of the mountains [59].

In addition, the smallest magnitude of variability occurred in the Central and Southwest China,
especially in the Ta-pa Mountains and the Qinling Mountains. This was due to the relatively large
cloudiness and rainfall in the subtropical monsoon climate, which is characterized by not so high
temperature in summer and not so cold temperature in winter, as the cold currents of the northwest
winds are blocked away from the southern slopes of the Qinling Mountains. Hence, the small
intra-seasonal variability of temperature produced a relatively stable TLR.

The TLR at very high altitudes (>5 km) was steeper than at low altitudes, in all months. It was also
found that the TLR generally increased with altitude [28]. This might be the result of low air humidity
at high altitude. As water vapor holds larger latent heat than dry air, when air with little vapor arises,
the temperature decreases quickly. Meanwhile, compared with high altitude, the temperature vertical
gradient inversion was more likely to happen in low altitude, in winter.

With the prevalence of satellite remote-sensing technology, the development of the methodology
for calculating and analyzing TLR, based on the grid data, is necessary, therefore, especially for the
studies of TLR in a large region with a complex topography. In this research, a formula derived on
the basis of the analysis of the temperature field and the height field could provide a new procedure
to calculate and analyze the TLR, which is beneficial to the study of mountainous microclimates.
Moreover, an image enhancement technique was used for the calculation of TLR and the FCM clustering
method was applied to the identification of seasonal patterns, the combination of which made it
possible to analyze the TLR, on a large spatial scale. In addition, as the methodology was based on
grid data, it was also applicable for estimating and analyzing the near-surface air TLR of a large region
when the datasets had been transformed into grid data, and further in the studies of mountainous
climate and regional climate change.

As LST is related to land use and vegetation cover, which might change with anthropogenic
influences [60,61], the gradient of the LST might also change, correspondingly. Depending on the
gradient of the LST, the land-surface TLR becomes changeable, especially in regions with denser
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populations. These changes might increase the spatial heterogeneity of land-surface TLR, which would
increase the noises of land-surface TLR images and reduce the accuracy of the methodology.
Considering this deficiency, stratifying the results with land use maps or vegetation index data
might be another promising way to analyze the variation of the land-surface TLR and to find the
relationship between the land-surface TLR and land cover.

6. Conclusions

A new methodology was developed in this paper to calculate and analyze the land-surface TLR.
With this methodology, the spatial and temporal pattern of the TLR in China was analyzed, and some
new findings were reported and discussed.

Surface temperature vertical gradient inversion widely occurred in Northeast, Northwest,
and North China, in winter, especially in the Xinjiang Autonomous Region, northern and western
parts of the Greater Khingan Mountains, the Lesser Khingan Mountains, and the northern area of
Northwest and North China. The summer pattern, which was characterized by the steepest TLR
during summertime, was distributed more widely throughout China. The Eastern Tibetan Plateau held
a distinct seasonal pattern, when compared to other regions in the world, with a steep TLR in winter
and spring, and a shallow TLR in summer. The temperature vertical gradient inversion phenomenon
occurred widely in Northeast China, in winter and early spring, with a strong temperature vertical
gradient inversion in western and northern parts of the Greater Khingan Mountains, but a steep TLR
appeared in some parts of the eastern slopes of the mountains. A large magnitude of variability of
TLR was found in Northeast China, where there was a steep TLR in spring and summer, and a strong
temperature vertical gradient inversion in winter. The smallest magnitude of variability occurred in
Central and Southwest China, especially in the Ta-pa Mountains and the Qinling Mountains. The TLR
at high altitude was generally steeper than at low altitude, and was usually steeper at very high
altitude (>5 km) than at low altitude, in all months of the year.

The methodology developed in this study has the potential to be applied for estimating grid
near-surface air TLR of a large region with complex topographical and geographical conditions,
and further in the studies of mountainous climates and regional climate change, in the future. However,
as only one case was used for the application of this methodology in this paper, the choice of the spatial
resolution was not discussed. Furthermore, the treatment of the near-zero gradient of height was
somehow rough. These two issues of the methodology, developed in this article, should be improved
in future studies. The spatial resolution can be adjusted to meet the different needs of studies in diverse
spatial scales. In order to shrink the influence of noise and obtain detailed information on TLR, as much
as possible, high-resolution data are suggested for the study of a smaller region. Mid-low resolution
data are suitable for the study of a larger region. In consideration of the relationship between the LST
and the land-use and vegetation cover, it would be a promising procedure to analyze the land-surface
TLR, by stratifying the results with the land-use maps or vegetation index data.
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